PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of dose distributions in target areas and organs at risk in conformal and VMAT techniques and dose verifications with the use of thermoluminescence dosimetry

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study is to compare dose distributions and their verification in target areas and organs at risk (OAR) in conformal and volumetric modulated arc therapy (VMAT) techniques. Proper verification procedures allow the removal of the major sources of errors, such as incorrect application of a planning system, its insufficient or cursory commissioning, as well as an erroneous interpretation of the obtained results. Three target areas (head and neck, chest, and pelvic) were selected and the treatment was delivered based on plans made using collapsed cone convolution and Monte Carlo algorithms with 6-MV photon beams, adopting conformal and VMAT techniques, respectively. All the plans were prepared for the anthropomorphic phantom. Dose measurements were performed with TL detectors made of LiF phosphor doped with magnesium and titanium (LiF:Mg,Ti). This paper presents the results of TL measurements and calculated doses, as well as their deviations from the treatment planning system (TPS) in the three planned target areas. It was established that the algorithms subject to analysis differ, particularly in dose calculations for highly inhomogeneous regions (OAR). Aside from the need to achieve the dose intended for the tumour, the choice of irradiation technique in teleradiotherapy should be dictated by the degree of exposure toindividual critical organs during irradiation. While nothing deviated beyond the bounds of what is acceptable by international regulatory bodies in plans from TPS, clinically one must be more cautious with the OAR areas.
Czasopismo
Rocznik
Strony
217--222
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
  • Heavy Ion Laboratory University of Warsaw Pasteura 5A, 02-093 Warszawa, Poland
  • Institute of Physics University of Silesia 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
  • Institute of Physics University of Silesia 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
autor
  • Radiotherapy Department Katowice Oncology Center Raciborska 27, 40-074 Katowice, Poland
Bibliografia
  • 1. Li, J. -S., Pawlicki, T., Deng, J., Jiang, S. -B., Mok, E., & Ma, C. -M. (2000). Validation of a Monte Carlo dose calculation tool for radiotherapy treatment planning. Phys. Med. Biol., 45(10), 2969–2985. DOI: S0031-9155(00)12262-6.
  • 2. Oelkfe, U., & Scholz, C. (2006). Dose calculation algorithms. In W. Schlegel, T. Bortfeld, & A. -L. Grosu (Eds.), New technologies in radiation oncology (pp.187–196). Berlin-Heidelberg: Springer.
  • 3. Wu, V. -W., Tse, T. -K., Ho, C. -L., & Yeung, E. -C. (2013). A comparison between anisotropic analytical and multigrid superposition dose calculation algorithms in radiotherapy treatment planning. Med. Phys., 38(2), 209–214. DOI: 10.1016/j.meddos.2013.02.001.
  • 4. International Atomic Energy Agency. (2004). Commissioning and quality assurance of computerized planning systems for radiation treatment of cancer. Vienna: IAEA. (TRS No 430).
  • 5. Rogers, D. -W. -O., & Bielajew, A. -F. (1990). Monte Carlo techniques of electron and photon transport for radiation dosimetry. In K. -R. Kase, B. -E. Bjarngard, & F. -H. Attix (Eds.), The dosimetry of ionizing radiation (pp. 427–540). Canada: Academic Press.
  • 6. Ahnesjö, A. (1989). Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med. Phys., 16(4), 577–592. DOI:10.1118/1.596360.
  • 7. Krieger, T., & Sauer, O. -A. (2005). Monte Carlo versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys. Med. Biol., 50(5), 859–868. DOI: 10.1088/0031-9155/50/5/010.
  • 8. Mijnheer, B., Olszewska, A., Fiorino, C., & Welleweerd, H. (2004). Quality assurance of treatment planning systems, practical examples for non-IMRT photon beams. Brussels: European Society of Therapeutic Radiation Oncology.
  • 9. Haertl, P. M., Pohl, F., Weidner, K., Groeger, Ch., Koelbl, O., & Dobler, B. (2013). Treatment of left sided breast cancer for a patient with funnel chest: Volumetric-modulated arc therapy vs. 3D-CRT and intensity-modulated radiotherapy. Med. Dosim., 38(1), 1–4. DOI: 10.1016/j.meddos.2012.04.003.
  • 10. Xu, Y., Deng, W., Yang, S., Li, P., Kong, Y., Tian, Y., Liao, Z., & Chen, M. (2017). Dosimetric comparison of the helical tomotherapy, volumetric modulated arc therapy and fixed-field intensity-modulated radiotherapy for stage IIB-IIIB nonsmall cell lung cancer. Sci. Rep., 7(1), 14863. DOI: 10.1038/s41598-017-14629-w.
  • 11. Abo-Madyan, Y., Aziz, M. H., Aly, M. M. O. M., Schneider, F., Sperk, E., Clausen, S., Giordano, F. A., Herskind, C., Steil, V., Wenz, F., & Glatting, G. (2014). Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiother. Oncol., 110(3), 471–476. DOI: 10.1016/j.radonc.2013.12.002.
  • 12. Rehman, J. U., Isa, M., Ahmad, N., Nasar, G., Asghar, H. M., Gilani, Z. A., Chow, J. C., Afzal, M., & Ibbott, G. S. (2018). Dosimetric, radiobiological and secondary cancer risk evaluation in head-and-neck three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and volumetric modulated arc therapy: A phantom study. J. Med. Phys., 43(2), 129–135. DOI: 10.4103/jmp. JMP_106_17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a6770e3-0d1e-4df9-9a62-fed760517c2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.