PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-stage fault formation and REE distribution in the surrounding Devonian dolomites in the south-eastern part of the Holy Cross Mountains (Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metallogenic studies carried out in the Holy Cross Mountains indicate a relationship between mineralization and fault tectonics in Devonian formations. The impact of fault formation on the geochemistry of host rocks has not yet been studied. Mineralogical and geochemical studies of fault core gouges and damage zones in the fault walls of Devonian dolomites in the Budy and Jurkowice quarries were carried out. In the clay-carbonate filling of the fault fissure, the presence of two generations of Fe sulfides, the increased content of Zr, Nb, U and Th in relation to the surrounding rocks was noted. In the fault walls of the dolomites, iron sulfide and hematite mineralization were found. Research on the REE content indicates that it is lower in the fault walls than in those located far from it, while it is clearly higher in the fault gouge, especially in terms of the content of “heavy” elements (HREE). This indicates both the supply of some components to the fault zone from external sources and their displacement from the surrounding rocks. It was also found that the fault was renewed before and after the Neogene at least twice (Badenian).
Wydawca
Rocznik
Strony
77--92
Opis fizyczny
Bibliogr. [39] poz., rys., tab., wykr.
Twórcy
autor
  • Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Krakow, Poland
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, Department of Geology of Mineral Deposits and Mining Geology, Krakow, Poland
Bibliografia
  • Bruhn R.L., Parry W.T., Yonkee W.A. & Thompson T., 1994. Fracturing and hydrothermal alteration in normal fault zones. Pure and Applied Geophysics – PAGEOPH, 142(3/4), 609–644. https://doi.org/10.1007/BF00876057.
  • Delle Piane C., Clennell M.B., Keller J.V.A., Giwelli A. & Luzin V., 2017. Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust. Journal of Structural Geology, 103, 17–36. https://doi.org/10.1016/j.jsg.2017.09.003.
  • Gawron P., Frycz M. & Długosz Ł., 2010. Określenie stropu zalegania starszego podłoża wykształconego jako dolomity i wapienie dewońskie. Archiwum Kopalń Dolomitu SA w Sandomierzu [unpublished].
  • Gratier J.P., Dysthe D.K. & Renard F., 2013. The role of pressure solution creep in the ductility of the Earth’s upper crust. Advances in Geophysics, 54, 47–179. https://doi.org/10.1016/B978-0-12-380940-7.00002-0.
  • Ishikawa T., Hirono T., Matsuta N., Kawamoto K., Fujimoto K., Kameda J., Nishio Y., Maekawa Y. & Honda G., 2014. Geochemical and mineralogical characteristics of fault gouge in the Median Tectonic Line, Japan: evidence for earthquake slip. Earth, Planets and Space, 66(1), 36. https://doi.org/10.1186/1880-5981-66-36.
  • Jaroszewski W., 1986. Tektonika a mineralogeneza: wybrane aspekty [Tectonics versus mineralogenesis – selected aspects]. Przegląd Geologiczny, 34(10), 560–566.
  • Jébrak M., 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Review, 12(3), 111–134. https://doi.org/10.1016/S0169-1368(97)00009-7.
  • Konon A., 2007. Strike-slip faulting in the Kielce unit, Holy Cross Mountains, central Poland. Acta Geologica Polonica, 57(4), 415–441.
  • Konon A., 2015. Tectonics of the Holy Cross Mountains folt belt. [in:] Sidorczuk M., Wańkiewicz A., Skompski S., Kozłowski W., Kozłowska M., Lindner L., Wysocka A., Olszewska-Nejbert D., Bąbel M., Głowniak E., Łuczyński P., Matyja B., Waksmundzki B., Leonowicz P., Górka M., Konon A., Radwański A., Barski M., Żylińska A. & Ziółkowski P., The Holy Cross Mountains: 25 journeys through Earth history, University of Warsaw, Faculty of Geology, Warszawa, 39–47.
  • Kutek J. & Głazek J., 1972. The Holy Cross area, Central Poland in the Alpine cycle. Acta Geologica Polonica, 22(4), 603–653.
  • Lamarche J., Mansy J.L., Bergerat F., Aveebuch O., Hakenberg M., Lewandowski M., Stupnicka E., Swidrowska J., Wajsprych W. & Wieczorek J., 1999. Variscan tectonics in the Holy Cross Mountains (Poland) and the role as structural inheritance during Alpine tectonics. Tectonophysics, 313(1–2), 171–186. https://doi.org/10.1016/S0040-1951(99)00195-X.
  • Liu Y., Wu K., Wang X., Pei Y., Liu B. & Guo J., 2017. Geochemical characteristics of fault core and damage zones of the Hong-Che fault zone of the Junggar Basin (NW China) with implications for the fault sealing process. Journal of Asian Earth Sciences, 143(1), 141–155. https://doi.org/10.1016/j.jseaes.2017.04.025.
  • Manighetti I., Boucher E., Chauvel C., Schlagenhauf A. & Benedett L., 2010. Rare earth elements record past earthquakes on exhumed limestone fault planes. Terra Nova, 22(6), 477–482. https://doi.org/10.1111/j.1365-3121.2010.00969.x.
  • Migdisov A., Williams-Jones A.E., Brugger J. & Caporuscio F.A., 2016. Hydrothermal transport, deposition and fractionation of the REE: Experimental data and thermodynamic calculations. Chemical Geology, 439, 13–42. https://doi.org/10.1016/j.chemgeo.2016.06.005.
  • Mizerski W., 1998. Podstawowe problemy tektoniki i tektogenezy utworów paleozoicznych Gór Świętokrzyskich [Main problems of tectonics and tectogenesis of the Paleozoic in the Holy Cross Mts (Central Poland)]. Przegląd Geologiczny, 46(4), 337–342.
  • Mizerski W., 2007. Holy Cross Mountains in the Caledonian, Variscan and Alpine cycles – major problems, open questions. Przegląd Geologiczny, 52(8/2), 774–779.
  • Mizerski W. & Orłowski S., 1992. Główne uskoki poprzeczne i ich znaczenie dla tektoniki antyklinorium klimontowskiego (Góry Świętokrzyskie). Kwartalnik Geologiczny, 37, 1, 19–40.
  • Mouslopoulou V., Moraetis D. & Fassoulas Ch., 2011. Identifying past earthquakes on carbonate faults: Advances and limitations of the ‘Rare Earth Element’ method based on analysis of the Spili Fault, Crete, Greece. Earth and Planetary Science Letters, 309(1–2), 45–55. https://doi.org/10.1016/j.epsl.2011.06.015.
  • Musiał A., Sermet E. & Nieć M., 2017. Rare Earth Elements in the rock sequence from Lower to Middle Devonian in the Holy Cross Mountains, Poland. [in:] SGEM 2017: 17th International Multidisciplinary Scientific Geoconference: Science and Technologies in Geology, Exploration and Mining: 29 June–5 July, 2017, Albena, Bulgaria: Conference Proceedings. Vol. 17 iss. 11, Geology Mineral Processing, STEF92 Technology Ltd., Sofia, 471–477.
  • Narkiewicz M., 1981. Budy – kamieniołom dolomitów i wapieni środkowego dewonu. [in:] Żakowa H. (red.), Przewodnik LIII Zjazdu Polskiego Towarzystwa Geologicznego, Kielce, 6–8 września 1981: praca zbiorowa, Wydawnictwa Geologiczne, Warszawa, 276–291.
  • Narkiewicz M., 1991. Procesy dolomityzacji mezogenetycznej na przykładzie żywetu i franu Gór Świętokrzyskich. Prace Państwowego Instytutu Geologicznego, 132, Wydawnictwa Geologiczne, Warszawa.
  • Nieć M. & Pawlikowski M., 2015. Mineralizacja markasytowo-hematytowo-ankerytowa w południowo wschodniej części Gór Świętokrzyskich. Przegląd Geologiczny, 69, 4, 219–227.
  • Nieć M. & Pawlikowski M., 2019. Dolomite-illitic rock (dolillite) – the product of hydrothermal replacement of carbonate rocks in the Holy Cross Mts. Poland – a possible guide to ores. Geological Quarterly, 63(2), 275–295. https://doi.org/10.7306/gq.1474.
  • Nuriel P., Rosenbaum G., Uysal T. I., Zhao J., Golding S. D., Weinberger R., Karabacak V. & Avani Y., 2011. Formation of fault related calcite precipitates and their implications for dating fault activity in the East Anatolian and Dead Sea fault zones. [in:] Fagereng Å. & Rowland J.V. (eds.), Geology of the Earthquake Source: A Volume in Honour of Rick Sibson, Geological Society, London, Special Publications, 359, Geological Society of London, 229–248. https://doi.org/10.1144/SP359.13.
  • Park S. & Kim Y., 2014. Mineralogy and geochemistry of Fault Gouge in pyrite-rich andesite. Journal of Mineralogical Society of Korea, 27(4), 301–310. https://doi.org/10.9727/jmsk.2014.27.4.301 [in Korean, with English abstract].
  • Pawłowski S., 1965. Zarys budowy geologicznej okolic Chmielnika – Tarnobrzega. [in:] Pawłowski S. (red.), Przewodnik XXXVIII Zjazdu Polskiego Towarzystwa Geologicznego: Tarnobrzeg, 21–24 sierpnia 1965, Wydawnictwa Geologiczne, Warszawa, 8–20.
  • Radwański A., 1973. Transgresja dolnego tortonu na południowo-wschodnich i wschodnich stokach Gór Świętokrzyskich. Acta Geologica Polonica, 23(2), 325–432.
  • Romanek A., 1977. Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000: arkusz Klimontów (887). Wydawnictwa Geologiczne, Warszawa.
  • Romanek A. & Rup M., 1989. Szarogłazy z Jurkowic na tle górnosylurskiej serii szarogłazowej południowej części Gór Świętokrzyskich. Biuletyn Państwowego Instytutu Geologicznego, 362, 41–64.
  • Rubinowski Z., 1971. Rudy metali nieżelaznych w Górach Świętokrzyskich i ich pozycja metalogeniczna. Biuletyn – Instytut Geologiczny, 247, Z Badań Złóż Kruszców w Polsce, 8, 5–166.
  • Rubinowski Z., Kowalczewski Z., Lenartowicz L. & Wróblewski T., 1966. Metalogeneza trzonu paleozoicznego Gór Świętokrzyskich. Prace – Instytut Geologiczny, Wydawnictwo Geologiczne, Warszawa.
  • Rudnick R.L. & Gao S., 2014. Composition of the continental crust. [in:] Holland H.D. & Turekian K.K. (eds.), Treatise on Geochemistry, 3, Elsevier, Amsterdam, 1–64.
  • Salwa S., 2017. Mapa geologiczna Gór Świętokrzyskich. [in:] Nawrocki J. & Becker A. (red.), Atlas geologiczny Polski, Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa, 32.
  • Sermet E., Musiał A. & Auguścik J., 2016. Geotopy południowo-wschodniej części Gór Świętokrzyskich [Geotourist attractions in the south-eastern part of the Holly Cross Mountains]. Biuletyn Państwowego Instytutu Geologicznego, 466, 271–277.
  • Su C., Li Y. & Wang Y., 2003. REE geochemistry as an indicator of activity of faults. [in:] Proceedings of the International Symposium on Water Resources and the Urban Environment: 9–10 November 2003, Wuhan, P.R. China, China Environmental Science Press, 565–570. https://www.researchgate.net/publication/288476877.
  • Williams-Jones A.E., 2015. The hydrothermal mobility of the rare earth elements. [in:] Simandl G.J. & Neetz M. (eds.), Symposium on Strategic and Critical Materials Proceedings, November 13–14, 2015, Victoria, British Columbia, British Columbia Geological Survey Paper, 2015-3, British Columbia Ministry of Energy and Mines, 119–123.
  • Wójcik K., 2015. The uppermost Emsian and lower Eifelian in the Kielce Region of the Holy Cross Mts. Part I: Lithostratigraphy. Acta Geologica Polonica, 65(2), 141–179. https://doi.org/10.1515/agp-2015-0006.
  • Wójcik E., Pelc A., Pacek A., 2012. Late Variscan deformation events in the Bardo Syncline revealed by biotite K-Ar dating of Ludlow-age tuffite (Holy Cross Mountains, Poland). Geological Quarterly, 65(1), 15. https//doi.org/10.7306/gq 1586.
  • Yongliang X. & Yusheng Z., 1991. The mobility of rare earth elements during hydrothermal activity: A review. Chinese Journal of Geochemistry, 10(4), 295–306. https://doi.org/10.1007/BF02841090.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a6731a9-a19c-4e38-a941-80ce0ed9c28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.