PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simplified car simulator usage in hmi research in chosen active safety systems conditions, for semi-autonomous vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Car simulators are an extremely important tool, allowing to test drivers in an environment similar to real driving conditions. Such a research provide many useful information for designing either driver aiding systems or systems use by driver. The newest car simulator can apply accelerations to the driver which are near to real ones (up to 0.8g), they have 6 degrees of freedom and move around 10m across the hangar (in which they are kept), but high price and space needed to build such a device complicate access to such a simulator. Aim of presented article is intended to show, that relatively simple car simulator can be used in many different researches with volunteers, and how results of such a research can be used in developing active safety systems
Rocznik
Strony
1003--1009
Opis fizyczny
Bibliogr. 47 poz., il., rys., wykr., pełen tekst na CD
Twórcy
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering
autor
  • Warsaw University of Technology, Faculty of Power and Aeronautical Engineering
Bibliografia
  • 1. C.K. Wojcik, S.F. Hulbert, The driving simulator — a research tool, ASME Paper 65-WA/HUF-13, November 1965.
  • 2. R.E. Beinke, J.K. Williams, Driving simulator, Paper presented at the General Motors Corporation Automotive Safety Seminar, July 1968.
  • 3. W. Lincke, et al., Simulation and measurement of driver vehicle handling performance, SAE Paper 730489, March 1973.
  • 4. S. Nordmark, et al., A moving base driving simulator with wide angle vision system, 64th Annual Meeting, Transportation Research Board, Washington D.C, January 1985.
  • 5. S. Nordmark, VTI driving simulator — mathematical model of a four-wheeled vehicle for simulation in real time, Swedish Road and Traffic Institute, VTI No. 267A, 1984.
  • 6. W.W. Wierwille, Driving simulator design for realistic handling, Proceedings of the Third International Conference on Vehicle System Dynamics, Swets and Zeitlinger, Amsterdam, 1975.
  • 7. E. Alicandri, HYSIM: the next best thing to being on the road, Public Roads, Winter 1994, Vol 57, No.
  • 8. J. Drosdol, F. Panik, The Daimler-Benz driving simulator a tool for vehicle development, SAE Paper 850334, February 1985.
  • 9. S. Hahn, W. Käding, The Daimler-Benz driving simulator — presentation of selected experiments, SAE Paper 880058, February 1988.
  • 10. W. Käding, The advanced Daimler-Benz driving simulator, SAE Paper 950175, February 1995.
  • 11. S. Nordmark, The new Trygg Hansa truckdriving simulator: an advanced tool for research and training, Swedish Road and Transport Research Institute, VTI Reprint 187 (1992), 6 pages, Proceedings of the International Symposium on Advanced Vehicle Control 1992 (AVEC '92), Yokohama, Japan, September 1992.
  • 12. D.H. Weir, S.M. Bourne, An overview of the DRI driving simulator, SAE Paper 950173, February 1995.
  • 13. D.A. Stoll, S.M. Bourne, The national advanced driving simulator: potential applications to ITS and AHS research, Proceedings of the 1996 Annual Meeting of ITS America, Volume 2, Houston, TX, April 1996.
  • 14. http://www.nads-sc.uiowa.edu/
  • 15. David H. Weir , Application of a driving simulator to the development of in-vehicle HMI, IATSS Research 34 (2010) 16–21.
  • 16. Peissner, M., Doebler, V., Metze, F., 2011. Can Voice Interaction Help Reducing the Level of Distraction and Prevent Accidents? Meta-study onDriver Distraction and Voice Interaction. Tech. rep. Fraunhofer-Institute for Industrial Engineering (IAO) and Carnegie Mellon University.
  • 17. Barón, A., Green, P., 2006. Safety and Usability of Speech Interfaces for In-Vehicle Tasks While Driving: A Brief Literature Review. Tech. rep.University of Michigan, Transportation Research Institute (UMTRI).
  • 18. H. Hofmann, et al., Evaluation of speech-based HMI concepts for information exchange tasks: A driving simulator study, Computer Speech and Language 33 (2015) 109–135.
  • 19. Hone, K.S., Graham, R., 2001. Subjective assessment of speech-system interface usability. In: Proceedings of European Conference on SpeechCommunication and Technology.
  • 20. Rogers, M., Zhang, Y., Kaber, D., Liang, Y., Gangakhedkar, S., 2011. The effects of visual and cognitive distraction on driver situation awareness.In: Proceedings of International Conference on Engineering Psychology and Cognitive Ergonomics.
  • 21. Horrey, W., Wickens, C., Consalus, K., 2006. Modeling driver’s visual attention allocation while interacting with in-vehicle technologies. J. Exp.Psychol.: Appl. 12 (2).
  • 22. Weyer J., et al. Human–machine cooperation in smart cars. An empirical investigation of the loss-of-control thesis, Safety Science 72 (2015) 199–208.
  • 23. Dewar, R. E., & Ells, J. C. (1974). A comparison of three methods for evaluating traffic signs. Transportation Research Record, 503, 38–47.
  • 24. Dewar, R. E., & Swanson, H. A. (1972). Recognition of traffic control signs. Highway Research Record, 414, 16–23.
  • 25. Al-Madani, H., & Al-Janahi, L. R. (2002). Role of drivers’ personal characteristics in understanding traffic sign symbols. Accident Analysis and Prevention, 34, 185–196.
  • 26. Shinar D., Vogelzang M., Comprehension of traffic signs with symbolic versus text Displays, Transportation Research Part F 18 (2013) 72–82.
  • 27. Shinar, D., Dewar, R. E., Summala, H., & Zakowska, L. (2003). Traffic sign symbol comprehension: A cross-cultural study. Ergonomics, 46(15), 1549–1565.
  • 28. Rami N. Khushaba R. N., et al. Muscle computer interfaces for driver distraction reduction, computer methods and programs in biomedicine 110 (2013) 137–149
  • 29. Yang-Kun O., Yung-Ching, L. Risk prediction model for drivers’ in-vehicle activities – Application of task analysis and backpropagation neural network. Transportation Research Part F: Traffic Psychology and Behaviour 18, pp. 83–93, 2013.
  • 30. Patten, C. J., Kircher, A., Östlund, J., & Nilsson, L. (2004). Using mobile telephones: cognitive workload and attention resource allocation. Accident Analysis & Prevention, 36(3), 341-350; Strayer, D. L., & Drews, F. A. (2004).
  • 31. Profiles in driver distraction: Effects of cell phone conversations on younger and older drivers. Human Factors, 46(4), 640-649.).
  • 32. Embrey, D. (2000). Task analysis techniques. Human Reliability Associates Ltd http://www.humanreliability.com/articles/Task%20Analysis%20Techniques.pdf
  • 33. Kass, S. J., Cole, K. S., & Stanny, C. J. (2007). Effects of distraction and experience on situation awareness and simulated driving. Transportation Research Part F: Traffic Psychology and Behaviour, 10(4), 321-329.
  • 34. Mattes, S. (2003). The lane-change-task as a tool for driver distraction evaluation. In H. Strasser, K. Kluth, H. Rausch & H. Bubb (Eds.), Quality of work and products in enterprises of the future (pp. 57-61). Stuttgart: Ergonomia.
  • 35. Mehler, B., Reimer, B., & Coughlin, J. F. (2012). Sensitivity of physiological measures for detecting systematic variations in cognitive demand from a working memory task: an on-road study across three age groups. Human Factors, 54(3), 396-412.
  • 36. Mehler, B., Reimer, B., Coughlin, J. F., & Dusek, J. A. (2009). Impact of incremental increases in cognitive workload on physiological arousal and performance in young adult drivers. Transportation Research Record, 2138(1), 6-12.
  • 37. Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual search, discrimination, and decision making. Journal of Experimental Psychology: Applied, 9(2), 119-137.
  • 38. Reimer, B., Mehler, B., Wang, Y., & Coughlin, J. F. (2012). A field study on the impact of variations in short-term memory demands on drivers' visual attention and driving performance across three age groups. Human Factors, 54(3), 454-468.
  • 39. Tsai, Y.-F., Viirre, E., Strychacz, C., Chase, B., & Jung, T.-P. (2007). Task performance and eye activity: predicting behavior relating to cognitive workload. Aviation, Space, and Environmental Medicine, 78(Supplement 1), B176-B185.
  • 40. Victor, T. W., Harbluk, J. L., & Engstrom, J. A. (2005). Sensitivity of eye-movement measures to in-vehicle task difficulty. Transportation Research Part F-Traffic Psychology and Behaviour, 8, 167-190.
  • 41. Boer, E. R. (2000). Method and apparatus for determining workload of motor vehicle driver: Google Patents.
  • 42. Nabo, A. (2009). Driver attention - Dealing with drowsiness and distraction (S. A. AB, Trans.): IVSS, Swedish Road Administration, Sweden.
  • 43. Coughlin, J. F., Reimer, B., & Mehler, B. (2011). Monitoring, managing and motivating driver safety and well-being. IEEE Pervasive Computing, 10(3), 14-21.
  • 44. Lenneman, J.K. & Backs, R.W. (2010). Enhancing assessment of in-vehicle technology attention demands with cardiac measures. Proceedings of the Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutoUI 2010), November 11-12, Pittsburgh, Pennsylvania, USA.
  • 45. Wilson, G. F. (2002). Psychophysiological test methods and procedures. In S. G. Charlton & T. G. O’Brien (Eds.), Handbook of Human Factors Testing and Evaluation (pp. 127-156). Mahwah, NJ: Lawrence Erlbaum.
  • 46. Son J., et al. IMPACT OF COGNITIVE WORKLOAD ON PHYSIOLOGICAL AROUSAL AND PERFORMANCE IN YOUNGER AND OLDER DRIVERS, PROCEEDINGS of the Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design.
  • 47. Pauzie, A., 2008. Evaluating driver mental workload using the driving activity load index (DALI). In: Proceedings of European Conference onHuman Interface Design for Intelligent Transport Systems.
Uwagi
brak tytułu i streszczenia w języku polskim
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a66d330-37c0-4009-8ff2-1bcd7bd3e693
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.