PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Calculation of laser radar cross-section of a spatial object and its experimental verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bidirectional reflectance distribution function of some artificial satellite used materials at the wavelength of 1.06 μm was measured in laboratory. Bidirectional reflectance distribution function (BRDF) models of these materials were established with the five-parameter BRDF model. Laser radar cross-section of a scaled satellite with various materials was calculated, and characteristics of laser radar cross-section of the satellite were discussed. Measurement system to measure laser radar cross-section of the satellite was established and the scaled satellite model was measured. By analyzing the measured data and calculated data, it can be clearly seen that the BRDF of the surface materials and the laser incidence angle are two of main influential factors of the scaled satellite’s laser radar cross-section. These works can provide a reference for design of the lidar system.
Czasopismo
Rocznik
Strony
521--532
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
  • Collaborative Innovation Center of Information Sensing and Understanding at Xidian University, Xi’an, 710071, China
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
autor
  • School of Physics and Optoelectronic Engineering, Xidian University, Xi’an, 710071, China
Bibliografia
  • [1] HUAYAN SUN, YI HAN, HUICHAO GUO, Study of the laser scattering characteristic of space objects, Proceedings of SPIE 7494, 2009, article ID 74940J.
  • [2] SUN PENG-JU, GAO WEI, WANG YUE-FENG, Calculation and application of laser radar cross section for targets, Infrared and Laser Engineering 35(5), 2006, pp. 597–598.
  • [3] TOMIYASU K., Relationship between and measurement of differential scattering coefficient (σ 0) and bidirectional reflectance distribution function (BRDF), IEEE Transactions on Geoscience and Remote Sensing 26(5), 1988, pp. 660–665.
  • [4] LUKESH G.W., CHANDLER S.M., BARNARD C.C., Estimation of satellite laser optical cross section: a comparison of simulations and field results, Proceedings of SPIE 4167, 2001, pp. 53–63.
  • [5] LUKESH G.W., CHANDLER S.M., VOELZ D.G., Analysis of satellite laser optical cross sections from the active imaging testbed, Proceedings of SPIE 4538, 2002, pp. 24–33.
  • [6] STEINVALL O., Effects of target shape and reflection on laser radar cross sections, Applied Optics 39(24), 2000, pp. 4381–4391.
  • [7] HAN YI, SUN HUA-YAN, LI YING-CHUN, TANG LI-MING, Simulation of space object laser radar cross section, Infrared and Laser Engineering 39(5), 2010, pp. 819–823.
  • [8] HAN YI, SUN HUAYAN, LI YINGCHUN, GUO HUICHAO, Fast calculation method of complex space targets’ optical cross section, Applied Optics 52(17), 2013, pp. 4013–4019.
  • [9] HONGSONG LI, SING-CHOONG FOO, TORRANCE K.E., WESTIN S.H., Automated three-axis gonioreflectometer for computer graphics applications, Optical Engineering 45(4), 2006, article ID 043605.
  • [10] PAPETTI T.J., WALKER W.E., KEFFER C.E., JOHNSON B.E., MRDF and BRDF measurements of low-scatter materials, Proceedings of SPIE 6550, 2007, article ID 65500H.
  • [11] OBEIN G., AUDENAERT J., GED G., LELOUP F.B., Metrological issues related to BRDF measurements around the specular direction in the particular case of glossy surfaces, Proceedings of SPIE 9398, 2015, article ID 93980D.
  • [12] HEGEDUS R., LUCAT A., REDON J., PACANOWSKI R., Isotropic BRDF measurements with quantified uncertainties, [In] Workshop on Material Appearance Modeling, [Eds.] R. Klein, H. Rushmeier, The Eurographics Association, 2016.
  • [13] HANLU ZHANG, ZHENSEN WU, YUNHUA CAO, GENG ZHANG, Measurement and statistical modeling of BRDF of various samples, Optica Applicata 40(1), 2010, pp. 197–208.
  • [14] NICODEMUS F.E., Directional reflectance and emissivity of an opaque surface, Applied Optics 4(7), 1965, pp. 767–775.
  • [15] ELHAM KALANTARI, YUSUF ESHQI MOLAN, Analytical BRDF model for rough surfaces, Optik – International Journal for Light and Electron Optics 127(3), 2016, pp. 1049–1055.
  • [16] RENHORN I.G.E., HALLBERG T., BOREMAN G.D., Efficient polarimetric BRDF model, Optics Express 23(24), 2015, pp. 31253–31273.
  • [17] BUTLER S.D., NAUYOKS S.E., MARCINIAK M.A., Comparison of microfacet BRDF model to modified Beckmann–Kirchhoff BRDF model for rough and smooth surfaces, Optics Express 23(22), 2015, pp. 29100–29112.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a643ccc-50d8-4b62-a811-05072306146d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.