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Abstract: In this paper the local and distortional buckling analyses of axially loaded cold-rolled channel and sigma profiles were per-
formed. The critical buckling load was computed by solving the linear eigenvalue problem for different numerical models using Finite Ele-
ment Method and simplified formulas implemented in Eurocode and proposed by Hancock and Schafer. The buckling analyses were con-
ducted to prove that the sigma cross-section can be successfully replaced by channel cross-section with additional elastic supports placed 
in folds of the web. It was demonstrated that the folds in the web of the sigma cross-section (additional elastic supports) reduce 
the slenderness of the web. So, the critical distortional stress can be calculated based on analytical formulas derived for the channel cross-
section taking into account the web height between the folds. 
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1. INTRODUCTION 

Application of thin-walled cold–formed sections increased 
the importance of local and distortional buckling phenomena 
which may appear at a similar or lower load level as global insta-
bility. In engineering approach buckling modes presented 
in the Tab. 1 are investigated separately. Global buckling is ana-
lysed based on Vlasov theory, which do not takes into account 
a local instability. Whereas the local buckling is considered based 
on the concept of effective cross-section. While the distortional 
buckling is analysed using the simplified analytical formulas de-
rived for equivalent cross-sections including flange with an edge 
stiffener. An alternative design procedure for cold-formed steel 
member is the Direct Strength Method widely discussed 
in (Schafer, 2008). This method employs gross cross-section 
properties, but requires an accurate calculation of member elastic 
buckling behaviour. It equals or betters the traditional Effective 
Width Method implemented in Eurocodes (Eurocode 3). 
The efficiency of Direct Strength Method is analysed in (Yua and 
Schafer, 2007) for cold-formed steel C- and Z-section beams 
through the comparing study of experimental data and results 
obtained from nonlinear finite element model. It was found that 
the moment gradient effect on distortional buckling failures can be 
conservatively accounted for in the Direct Strength Method by 
using an elastic buckling moment that accounts for the moment 
gradient. On the other hand in (He et al., 2014) based on experi-
mental data of fixed-ended web-stiffened lipped channel columns 
eroded by mode interaction behaviour combined with distortional 
and local deformations authors concludes that the Current Direct 
Strength Method (DSM) provides very unsafe predictions. There-
fore the they proposed two DSM-based design approaches, 
namely, the nominal strength against local-distortional (NLD) and 
distortional-local (NDL) procedures. Similar conclusions were 
drawn in (Wang and Young, 2014) for cold-formed steel channels 

with stiffened webs subjected to bending. This studies have 
demonstrated that the local and distortional buckling still a need 
for of scientific research. 

It is worth to mention that distortional buckling of compression 
members is associated with the deformation of the contour 
in a form of symmetrical or asymmetrical closing or opening 
of the section and change of the angle between adjacent walls. 
Distortional buckling of compression members has been widely 
discussed in literature. In Lau and Hancock (1990) the authors 
proposed distortional buckling formulas for columns made of cold-
rolled channel cross-sections. The distortional buckling analysis 
was also carried out by (Schafer, 2000). The Schafer’s report data 
was used by Pala (2006) for training and testing a new neural 
network (NN) to determine of the elastic distortional buckling 
stress (EDBS) of cold-formed steel C-sections with both 
end sections pinned. It was found that the proposed NN based-
formula can be used for the explicit formulation of various anal-
yses of EDBS, especially when an analytic expression could not 
be obtained from the results of experimental and numerical stud-
ies. The effectiveness of new NN based-formula was tested by 
parametric study for distortional buckling stress on cold-formed 
steel presented in Pala and Caglarb (2007). The comparative 
analysis conducted by Szymczak and Werochowski (2005) 
showed that the critical distortional stresses calculated according 
the designing code are overestimated in relation to the formulas 
proposed by Hancock and Schafer. 

An analytical model for predicting the critical stress of distor-
tional buckling of zed and sigma cold-formed steel sections was 
proposed by Long-yuan and Jian-kang (2008). They derived 
and validated closed-form formulas providing a good prediction 
of the distortional buckling stress, despite its simplicity. Next, 
analyses of distortional buckling of cold-formed sigma purlins 
using EN1993-1-3 was performed by Long-yuan (2009). He ana-
lysed the influence of different support conditions at both 
the tension and compression ends of the web on the critical stress 
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of distortional buckling of sigma purlins. Moreover he performed 
the comparison with finite strip analysis. The general explicit 
analytical formulae to provide distortional critical stress for cold-
formed steel C-section columns subjected to uniform compression 
was derived in Zhou et al. (2015) by employing the Lau and Han-
cock model and by introducing a new factor for considering 
the web rotational restraint reduced by web bending. 

Tab. 1. The buckling modes of axially loaded thin-walled sigma profile 

Buckling modes 

local buckling distortional buckling 

  

Global buckling 

vertical translation horizontal translation rotation 

 
  

In this paper the local and distortional buckling analyses 
of cold-rolled sigma profiles were performed. In the first part 
of the study three numerical models were created using Finite 
Element Method. The buckling analyses were conducted to prove 
that the sigma cross-section can be successfully replaced 
by channel cross-section with additional elastic supports placed 
in folds of the web. Then, based on the assumption that the folds 
of the web (additional elastic supports) reduce the slenderness 
of the web  the critical distortional stress was calculated basing 
on Eurocode recommendations and Hancock and Schafer formu-
las. In the second part, the FEM numerical model corresponding 
to Eurocode recommendation was created in order to verify 
the assumptions introduced in the analytical analysis and to inves-
tigate the interactive buckling, which is not taken into account 
in analytical formulas. 

2. BUCKLING FEM ANALYSIS 

2.1. Linear eigenvalue problem 

In the numerical computations the values of critical buckling 
load for axially loaded channel and sigma bars were computed by 
solving the linear eigenvalue problem: 

(𝐊𝑂 + 𝜆𝐊𝐺)𝐔 = 0, (1) 

where: 𝐊𝑂 – is the small-displacement stiffness matrix, 𝐊𝐺  – is 

the initial stress matrix, 𝜆 – is the load multiplier and 𝐔 – is eigen-
vector represents the buckling mode shapes. In Eq. (1) 
the proportional loading and linearization of the pre-buckling state 
was assumed. The critical buckling loads are given by 
the following formula: 

𝑃𝑐𝑟 = 𝜆𝑐𝑟𝑃, (2) 

where: 𝑃 – is the reference load (the base state). 

2.2. Numerical model 1 

The real and simplified numerical model was created using 
Abaqus CEA software (Abaqus 6.13 Documentation). In the sim-
plified model the sigma cross-section was replaced by channel 
cross-section with supports as shown in Fig. 1. The main aim 
of this part of the study was to verify the influence of supports 
on the value of critical stress. 

 
Fig. 1. Geometry of numerical model 1: a) real cross-section, b) simplified 

model: channel with additional supports 

The element was meshed by four nodes shell finite elements 
S4R with dimension 4 x 4 mm. R means that the reduced integra-
tion was used. The axially compressive forces were applied to 
the special defined reference points. The reference points were 
created in the gravity centre of the cross section on he both side 
of the beam as shown in Fig. 2. The reference points were con-
nected with the cross-section by coupling constraints. The bound-
ary conditions were created to imitate a static shame of simply 
supported beam and then were also applied to the reference 
points. The computation were performed in Abaqus CEA program 
using Buckling Type of analysis in order to calculate the load 
proportionality factor. 

 
Fig. 2. The reference points in one of the created models 
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The analysis was performed for several cold-formed symmet-
rical channel and sigma profiles with dimensions shown in Fig. 3 
(flange width b = 70 mm, wall thickness t = 1.5 mm and the lip 
width c = 16 mm). The six different values of height of the cross 
section (H= 140, 200, 230, 260, 300 and 350 mm) and different 
slenderness ratio of the bar (L/imin= 10, 25, 50, 75, 100, 125, 150, 
200 and 250) were analysed. 

  
Fig. 3. Dimensions of the analysed models 

2.3. Results – numerical model 1 

The values of critical stress were calculated for several values 
of slenderness ratio (the beam length vs radius of gyration). 
In majority of the analysed cases the local and global interactive 
buckling phenomena was observed. 

Exemplary results obtained in buckling analysis for the cross-
section of the height of 230 mm and different slenderness ratio 
were presented in the Fig. 4. 

 
Fig. 4. The values of the critical load (Pcr) as a function of concentric  

  axially loaded thin-walled bar slenderness radio (L/imin) 

It was found that for the large values of the slenderness ratio 
(200 ÷ 250) the dominant buckling mode was the global one. This 
buckling mode was successfully described by Vlasov theory. As it 

was mentioned before, for the lower slenderness ratio the local 
and global interactive buckling occur. The same phenomena was 
observed as well in the case of the channel, sigma and simplified 
model. 

It is worth to mention that obtained results for the sigma 
and simplified model (Fig. 1) remained in the compliance for the 
slender ratio (10 – 150). The slightly different behaviour was 
observed for the higher slenderness ratio when the global buck-
ling occurred. 

For slenderness ratio equal less than or equal to 100 the pure 
local buckling mode was extracted. The obtained results for this 
case were presented in Tab. 2. The local forms of buckling for 
the cross-section for the height of 230 mm were presented 
in the Fig. 5. 

Tab. 2. The values of critical stress for different height  
             of the cross-section 

The critical stress 

σcr [MPa] 

H 

[mm] 
   

L/imin ≤ 100 – local buckling 

140 134.30 445.49 455.60 

200 79.90 293.79 322.91 

230 45.66 162.60 170.62 

260 52.19 120.62 145.11 

300 44.06 84.98 97.03 

350 40.60 67.87 74.14 

 
Fig. 5. The local forms of buckling for: channel (a), channel  

  with additional supports (b) and sigma (c) cross-section 

One can noticed that applying the simplified model (Fig. 5 b) 
provides the similar results comparing to the real sigma cross-
section both in the shape of the buckling mode and the value 
of critical buckling stresses (Tab. 2). 

3. DISTORTIONAL BUCKLING 

3.1. Theoretical background 

The critical distortional buckling stress for edge or intermedi-
ate stiffener according to (Eurocode 3, 2006) is evaluated from: 

𝜎𝑐𝑟,𝑠 =
2√𝐾𝐸𝐼𝑠

𝐴𝑠
, (3) 

where: 𝐾 – is the spring stiffness per unit length according to 
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the formula (4), 𝐴𝑠 – is the area of the effective cross-section,  

𝐼𝑠  – is the moment of inertia of the effective cross-section. 

𝐾 =
𝐸𝑡3

4(1−𝜈2)
∙

1

𝑏1
2ℎ𝑤+𝑏1

3+0,5𝑏1𝑏2ℎ𝑤𝑘𝑓
, (4) 

where: 𝑡 – is flange thickness, ℎ𝑤 – is the web depth, 𝑏1, 𝑏2 – is 
the distance between the web-to-flange junction and the gravity 
centre of the effective area of the edge stiffener of flange respec-
tively 1 or 2, 𝑘𝑓 – is the ratio which is equal to 1 for a symmetric 

section in compression. 

 
Fig. 6. The model used to analyse distortional buckling  

  according to    EN-1993-1-3 (Eurocode 3, 2006) 

Alternatively, the critical distortional buckling stress can be 
calculated from the equations formulated by Lau and Hancock (5) 
or from formula proposed by Schafer (8). 

𝜎𝑐𝑟 =
𝐸

2𝐴𝑓
[(𝛼1 + 𝛼2) − √(𝛼1 + 𝛼2)

2 − 4𝛼3], (5) 

where: Af – is the cross-sectional area of the flange and lip, 

α1, α2, α3 – are coefficients dependent on the geometrical char-

acteristics and the value of elastic rotation spring stiffness kϕ 

(Fig. 7). 
The main idea of the Lau and Hancock method is to determine 

the flexural – torsional buckling critical stress of the model shown 

in the Fig. 7, where hy and hz are the coordinates of the centroid 

of flange and lip and k2 is the translational spring stiffness. 

 
Fig. 7. The Lau and Hancock model 

This method can be used only in the case when the value of 
rotation spring stiffness is greater than 0. The modification of Lau 
and Hancock method for the case when the value of rotation 
spring stiffness is less than 0 was proposed by Davies 
and Jiang (1996). Two additional variables were introduced:  

σ`cr – stress determined by the formula (5) assuming kϕ = 0 

and σw – the web critical buckling stress (6). 

𝜎𝑤 =
𝜋2𝐷

𝑡ℎ𝑤
4 (

ℎ𝑤
2 +𝜆2

𝜆
)
2

, (6) 

where: 𝐷 – is plate stiffness, 𝜆 – is the half – wavelength. 

Finally the distortional critical buckling stress (when kϕ < 0) 

can be determined using following formula: 

𝜎𝑐𝑟 =
2𝜎`𝑐𝑟𝐴𝑓+𝜎𝑤𝑡ℎ𝑤

𝐴
, (7) 

where: 𝐴 – is the total area of the cross-section. 
However, the critical stress proposed by Schafer is given as 

a function of rotational stiffness of the support at the point 
of the flange-web junction. 

𝜎𝑐𝑟 =
𝑘𝜑𝑓𝑒+𝑘𝜑𝑤𝑒

𝑘𝜑𝑓𝑔+𝑘𝜑𝑤𝑔
, (8) 

where: 𝑘𝜑𝑓𝑒 , 𝑘𝜑𝑤𝑒 – are elastic rotational spring stiffness 

of the flange and web and 𝑘𝜑𝑓𝑔, 𝑘𝜑𝑤𝑔  – are geometric rotational 

spring stiffness of the flange and web. 

3.2. Numerical model 2 

 
Fig. 8. The numerical model 2 

To verify the analytical models presented in the paragraph 3.1 
the numerical model 2 using finite element method and shell 
elements S4R was created. In numerical model 2 (Fig. 8) 
the boundary conditions and geometry were applied according to 
the Eurocode 3 recommendations (Fig. 6). The elastic spring 
supports were modelled with the stiffness equal to the value de-
termined from the formula 4. 

The numerical examples were carried out for the simplified 
model which corresponded to the sigma cross-section with 
the high H= 140, 200, 230, 260, 300 and 350 mm. Based on 
the conclusions drawn from analysis conducted in paragraph 2.3, 
during the calculations of critical distortional stress using Euro-
code, Hancock and Schafer formulas the reduce value of the web 
height (hw) was applied (distance between two additional elastic 
supports Fig. 1). The obtained results was compared with 
the FEM numerical model corresponding to Eurocode equivalent 
cross-section. The results of the calculations were presented 
in Tab. 3. 

Tab. 3. The critical distortional buckling stress 

H 

[mm] 

hw 

[mm] 

Shafer 

[MPa] 

Lau-Hancock 

[MPa] 

EN 1993-1-3 

[MPa] 

FEM 

[MPa] 

140 50 423.01 341.56 323.61 308.49 

200 110 266.90 245.75 250.69 262.83 

230 140 216.18 211.25 228.85 242.66 

260 170 172.60 177.27 211.89 220.76 

300 210 124.87 129.06 194.19 213.57 

350 260 81.65 102.43 117.28 129.21 
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4. CONCLUDING REMARKS 

In this paper the local and distortional buckling analyses of ax-
ially loaded cold-rolled channel and sigma profiles were per-
formed. The special attention was focused on creating the simpli-
fied models of sigma cross-sections which allowed for applying 
the analytical formulas for calculation of distortional buckling 
derived for the channel cross-section. For this purpose the finite 
element models were created in order to verify simplified formulas 
implemented in Eurocode and proposed by Hancock and Schafer. 
The performed buckling analyses proved that the sigma cross-
section can be successfully replaced by channel cross-section 
with additional elastic supports placed in folds of the web. It was 
demonstrated that the folds in the web of the sigma cross-section 
(additional elastic supports) reduce the web slenderness. So, the 
critical distortional stress can be calculated based on analytical 
formulas derived for the channel cross-section taking into account 
the web height between the folds (hw). 

REFERENCES 

1. Abaqus Documentation – version 6.13, http://www.abaqus.com 
2. Davies J.M., Jiang C. (1996), Design of thin walled columns for 

distortional buckling, Proceedings of the Second International 
Conference on Coupled Instability in Metal Structures CIMS’96, 
Liege, Belgium. 

3. EN 1993-1-3, Eurocode 3 (2006), Design of steel structures – 
Part 1-3: General rules – Supplementary rules for cold-formed 
members and sheeting. 

4. He Z., Zhou X., Liu Z., Chen M. (2014), Post-buckling behaviour and 
DSM design of web-stiffened lipped channel columns with distortional 
and local mode interaction, Thin-Walled Structures, 84, 189–203. 

5. Lau, S.C.W., Hancock, G.J. (1990), Inelastic buckling of channel 
columns in the distortional mode, Thin – Walled Structures, 10,      
59-84. 

6. Long-yuan Li (2009), Analyses of distortional buckling of cold-
formed sigma purlins using EN 1993-1-3, Journal of Constructional 
Steel Research, 65, 2099-2102. 

7. Long-yuan Li, Jian-kang Ch. (2008), An analytical model for 
analysing distortional buckling of cold-formed steel sections,      
Thin – Walled Structures, 46, 1430-1436. 

8. Pala M. (2006) A new formulation for distortional buckling stress in 
cold-formed steel members, Journal of Constructional Steel 
Research, 62, 716–722. 

9. Pala M., Caglarb N. (2007), A parametric study for distortional 
buckling stress on cold-formed steel using a neural network, Journal 
of Constructional Steel Research, 63,  686–691. 

10. Schafer B.W. (2000), Distortional buckling of cold-formed steel 
columns, Final Report of AISI. 

11. Schafer B.W. (2008), Review: The Direct Strength Method of cold-
formed steel member design, Journal of Constructional Steel 
Research, 64 766–778. 

12. Szymczak C., Werochowski W. (2005), Distortional instability 
of axially loaded cold-formed elements with stiffened flanges 
(in Polish), Inżynieria i Budownictwo, R. 61, 2, 85-88. 

13. Wang L., Young B. (2014), Design of cold-formed steel channels 
with stiffened webs subjected to bending, Thin-Walled Structures, 85, 
81–92. 

14. Yua C., Schafer B.W. (2007),Simulation of cold-formed steel beams 
in local and distortional buckling with applications to the direct 
strength method, Journal of Constructional Steel Research, 63,  
581–590. 

15. Zhou X., Liu Z., , He Z. (2015), General distortional buckling 
formulae for both fixed-ended and pinned-ended C-section columns, 
Thin-Walled Structures, 94, 603–611. 

Financial support by the grant 01/11/DSPB/0605/2016 DSPB is kindly 
acknowledged. 

 

 

 


