Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The magnetic properties of ferromagnetic objects or naturally occurring minerals such as ores can be detected and mapped using magnetic field theory studies. Magnetometry water area survey are commonly used for the purposes of detecting the oil or gas pipelines, shipwrecks and their equipment (i.e. anchors or engines), wrecks of airplanes or cars, barrels, containers, unexploded ordnances and mines and other metal debris. It is possible by detecting the magnetic anomalies they induce. The following article is presenting the stages of geoclassification of the bottom objects based on the analysis of a magnetic anomaly map. In order to determine the conditions and parameters of geoclassification, a catalog of ferrous seabed bottom features was previously developed. The catalog is dedicated to inland water areas and contains the characteristics of features potentially possible to meet in these waters along with the parameters of the magnetic anomaly they induce: e.g. spatial dimensions (length, width, area, perimeter, value ratio) together with the value of the generated anomaly itself. The further part of the article presents the map segmentation process, carried out for the purpose of detecting the areas covered by an anomaly and then dimensioning it along with the classification procedure. The whole process is summarized with the verification of the correctness of the method's operation on modeled and real anomalies.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
18--28
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
- Maritime University of Szczecin Szczecin, Poland
autor
- Maritime University of Szczecin Szczecin, Poland
Bibliografia
- 1. Bodus-Olkowska, Izabela, i Janusz Uriasz. Segmentacja obrazu mapy anomalii magnetycznej akwenu dla celów detekcji i lokalizacji podwodnych obiektów ferromagnetycznych. Roczniki Geomatyki, t. 17, 1(84), Polskie Towarzystwo Informacji Przestrzennej, 2019.
- 2. Bodus-Olkowska, I., Uriasz, J., Ferromagnetic Underwater Target Detection Based on a Magnetic Anomaly Map. Geomatics and Environmental Engineering, 14(1), 2020. https://doi.org/10.7494/geom.2020.14.1.35.
- 3. Dimitriu, R.G., Barbu, M.B., Radu, O., Stanciu, I.M., Roșca, V., 2019, Marine geophysical investigations to assess the safety of the Romanian maritime space. Case study: Midia harbor offshore: 19th International Multidisciplinary Scientific GeoConference SGEM2019, Conference Proceedings, 19, 1.1, 873-881, 2019. ISSN 1314-2704, ISBN 978-619-7408-76-8, DOI: 10.5593/SGEM2019/1.1.
- 4. Dimitriu, R. G., Main results of marine gravity and magnetic researches carried out at GeoEcoMar. Geo-Eco-Marina, 25, 75–98, 2019. DOI:10.5281/zenodo.3607420.
- 5. Dharini S., Jain S., An efficient and hybrid pulse coupled neural network - based object detection framework based on machine learning, Computers & Electrical Engineering, Volume 96, Part B, 2021.
- 6. Dimitriu, R.G., Tchernychev, M., Lukic, Z., Barbu, B.M., A Magnetic Investigation of the Scuttled, German Danube Flotilla and of the Risks it Poses: 11th Congress of the Balkan Geophysical Society, Bucharest, Romania, October 10-14, 2021, Conference Proceeding Volume BGS2021, 2021. DOI: 10.3997/2214-4609.202149BGS83.
- 7. Holt P., Marine Magnetometer Processing, , 3H Consoulting Ltd., Plymouth, 2019.
- 8. Ibraheem, I.M.; Aladad, H.; Alnaser, M.F.; Stephenson, R., IAS: A New Novel Phase-Based Filter for Detection of Unexploded Ordnances. Remote Sens. 13, 2021. https://doi.org/10.3390/rs13214345
- 9. Kantsios V., Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Fort Rucker, Alabama; Demonstration Report; ESTCP Project MR-201161, URS Group Inc., 2013.
- 10. Kantsios V., Helmilinger B., Hall D., King T., Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Pole Mountain Target and Maneuver Area, Wyoming; Final Report; ESTCP Project MR-201161, URS Group Inc., 2012.
- 11. Kantsios V., Helmilinger B., Hall D., Demonstration of Advanced Geophysics and Classification Technologies on Munitions Response Sites Former Spencer Artillery Range Van Buren County, Tennessee; Demonstration Report; ESTCP Project MR-201161, URS Group Inc., 2013.
- 12. Khodayari-Rostamabad A., Reilly J. P., Nikolova N. K., Hare J. R., Pasha S., Machine Learning Techniques for the Analysis of Magnetic Flux Leakage Images in Pipeline Inspection, IEEE Transactions on Magnetics, vol. 45, no. 8, pp. 3073-3084, 2009. doi: 10.1109/TMAG.2009.2020160.
- 13. Kolster M. E., Døssing A., Scalar magnetic difference inversion applied to UAV-based UXO detection, Geophysical Journal International, Volume 224, Issue 1, , Pages 468–486, 2021. https://doi.org/10.1093/gji/ggaa483.
- 14. Mani V. R. S., Saravanaselvan A., Arumugam N., Performance comparison of CNN, QNN and BNN deep neural networks for real-time object detection using ZYNQ FPGA node, Microelectronics Journal, Volume 119, 2022.
- 15. Mattei, G., & Giordano, F., Integrated geophysical research of Bourbonic shipwrecks sunk in the Gulf of Naples in 1799. Journal of Archaeological Science: Reports, 1, 64–72, 2015. https://doi.org/10.1016/J.JASREP.2014.11.003.
- 16. Monteiro, A., & Costa, M., Underwater Archaeology with Light AUVs. Oceans, 2019. https://doi.org/10.1109/OCEANSE.2019.8867503.
- 17. Nazlibilek S., Kalender O., Ege Y., Mine Identification and Classification by Mobile Sensor Network Using Magnetic Anomaly, IEEE Transactions on Instrumentation and Measurement, 2011. DOI: 10.1109/TIM.2010.2060220.
- 18. Pearline A. S., Kumar S. V., Performance analysis of real-time plant species recognition using bilateral network combined with machine learning classifier, Ecological Informatics, Volume 67, 2022.
- 19. Pratt W. K., Introduction to Digital Image Processing, CRC Press, 2014. ISBN 978-1-4822-1669-1, 2014.
- 20. Pregesbauer M., Trinks I., Neubauer W., Automatic Classification of Near Surface Magnetic Anomalies – an Object Oriented Approach, 10th International Conference on Archaeological Prospection, 2013. DOI: 10.2307/j.ctvjsf630.131
- 21. Sadgrove E. J., Falzon G., Miron D., Lamb D. W., Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM), Computers in Industry, Volume 98, 2018. ISSN 0166-3615, https://doi.org/10.1016/j.compind.2018.03.014.
- 22. Shivappriya S. N., Priyadarsini M. J. P., Stateczny, A., Puttamadappa, C., & Parameshachari, B. D. Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function. Remote Sensing, 13, 2021, https://doi.org/10.3390/rs13020200
- 23. Tang Y., Ren F., Pedrycz W.,, Fuzzy C-Means clustering through SSIM and patch for image segmentation, Applied Soft Computing, Volume 87, 2020. ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2019.105928.
- 24. Underhay S. L., Vardy M. E., and Henstock T. J., Marine UXO detection: Critical analysis of the magnetic workflow, Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2021, https://doi.org/10.4133/sageep.33-188
- 25. Xiang Z., Zhang R., Seeling P., Chapter 19 - Machine learning for object detection, Editor(s): Frank H.P. Fitzek, Fabrizio Granelli, Patrick Seeling, Computing in Communication Networks, Academic Press, 2020. ISBN 9780128204887, https://doi.org/10.1016/B978-0-12-820488-7.00034-7.
- 26. Zhao J., Xu Sh., Wang R., Zhang B., Guo G., Doermann D., Sun D., Data-adaptive binary neural networks for efficient object detection and recognition, Pattern Recognition Letters, Volume 153, 2022
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a61fde6-00b1-467e-9cb4-1f11c6c38f86