Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pharmaceutical wastewater, including antibiotics, is being increasingly detected in the environment as a form of micropollutant. Researchers have progressively concentrated on integrating the advanced oxidation process (AOPs) with photocatalysts such as bismuth oxide (Bi2O3) to degrade antibiotics. The study involved the effective synthesis of pure Bi2O3 and Copper doped Bi2O3 (CBO) thin films using the sol-gel process. These thin films were then coated using the spray coating technique, and studied for their ability to degrade levofloxacin (LFX). The characterization including UV-Vis and XRD were used to analysed the properties of all synthesized thin films. 3% CBO thin films have the good quality compared with other thin films with the lowest energy band gap is 2.54 eV and crystallite size are 28.1938 nm. The degradation efficiency of 3% CBO thin films using photocatalysis is 85.95%. The degradation kinetic rate value is 0.00637 min-1 for pseudo-first-order kinetics and 0.00676 min-1 for pseudo-second-order kinetics. The reusability of CBO thin films was also evaluated to determine the sustainability of the thin films.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
207--221
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
- Doctoral Program of Environmental Science, School of Postgraduate, Diponegoro University, Semarang, 50275, Indonesia
- Smart Material Research Center (SMARC), Diponegoro University, Semarang, 50275, Indonesia
autor
- Department or Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, 50275, Indonesia
- Smart Material Research Center (SMARC), Diponegoro University, Semarang, 50275, Indonesia
autor
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, 50275, Indonesia
autor
- Advanced Membrane Technology Research Center (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia
autor
- Department or Physics, Faculty of Science and Mathematics, Diponegoro University, Semarang, 50275, Indonesia
- Smart Material Research Center (SMARC), Diponegoro University, Semarang, 50275, Indonesia
autor
- Doctoral Program of Environmental Science, School of Postgraduate, Diponegoro University, Semarang, 50275, Indonesia
- Smart Material Research Center (SMARC), Diponegoro University, Semarang, 50275, Indonesia
Bibliografia
- 1. Zhong X., Zou Z.S., Wang H.L., Huang W., Zhou B.X. 2019. Enhanced activation of persulfate by Co-doped bismuth ferrite nanocomposites for degradation of levofloxacin under visible light irradiation. Materials (Basel)., 12(23), 2019. doi: 10.3390/ma12233952.
- 2. Gong S., Sun Y., Zheng K., Jiang G., Li L., Feng J. 2020. Degradation of levofloxacin in aqueous solution by non-thermal plasma combined with Ag3PO4/ activated carbon fibers: Mechanism and degradation pathways. Sep. Purif. Technol., 250(117264). doi: 10.1016/j.seppur.2020.117264.
- 3. Chen Z., Ning B., Cai Y., Liu M., Xu P., Zhang P., Xiao G., He Y. 2023. Rapid degradation of levof loxacin by p-n heterojunction AgFeO2/Ag3VO4 photocatalyst: Mechanism study and degradation pathway. J. Taiwan Inst. Chem. Eng., 151, 105126. doi: 10.1016/j.jtice.2023.105126.
- 4. Xia Y., Dai Q. 2018. Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: Kinetics, energy demands and reaction pathways. Chemosphere, 205, 215–222. doi: 10.1016/j.chemosphere.2018.04.103.
- 5. Hamad M.T.M.H., El-Sesy M.E. 2023. Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology. Bioresour. Bioprocess., 10(1), 1–29, 2023, doi: 10.1186/s40643-022-00616-1.
- 6. Go A.D., dela Rosa F.M., Camacho D.H., Punzalan E.R. 2022. Dataset on photocatalytic degradation of Levofloxacin using hydroxyapatite photocatalyst: Optimization by response surface methodology. Data Br., 42(February), 101126, 2022, doi: 10.1016/j.dib.2022.108219.
- 7. Go A.D., dela Rosa F.M., Camacho D.H., Punzalan E.R. 2022. Dataset on photocatalytic degradation of Levofloxacin using hydroxyapatite photocatalyst: Optimization by response surface methodology. Data Br., 42(January), 101126. doi: 10.1016/j.dib.2022.108219.
- 8. Ben Ayed A., et al. 2024. Genome sequencing of Porostereum spadiceum to study the degradation of levofloxacin. Ecotoxicol. Environ. Saf., 270(January). doi: 10.1016/j.ecoenv.2023.115808.
- 9. Wang S., et al. 2023. Electrocatalytic degradation of levofloxacin wastewater by Ru-Ti-Ni/CNT electrodes. Catal. Commun., 182(August), 106756. doi: 10.1016/j.catcom.2023.106756.
- 10. Lu X. et al. 2023. Levofloxacin degradation by porous Cox/CN activated peroxymonosulfate: Investigation of efficiency, mechanism, and degradation pathways. J. Water Process Eng., 56(October), 104427. doi: 10.1016/j.jwpe.2023.104427.
- 11. Nair N.G., Gandhi V.G., Modi K., Shukla A. 2024. Photocatalytic degradation of levofloxacin by GOTiO2 under visible light. Mater. Today Proc., October. doi: 10.1016/j.matpr.2023.12.049.
- 12. Zhang M., et al. 2023. Preparation of BiVO4/CO32−Bi2O2CO3 heterojunctions for enhanced photocatalytic activity in the degradation of levofloxacin under visible light. J. Alloys Compd., 965(July), 171471. doi: 10.1016/j.jallcom.2023.171471.
- 13. Sa’adah F., Sutanto H., Hadiyanto. 2022. Optimization of the Bi2O3/Cu synthesis process using response surface methodology as a tetracycline photodegradation agent. Results Eng., 16(June), 100521. doi: 10.1016/j.rineng.2022.100521.
- 14. Liu H.Z., Han Q.F., Ding H.W., Yu H.M., Chiu T.W. 2022. One-step route to α-Bi2O3/BiOX (X = Cl, Br) heterojunctions with Bi2O3 ultrafine nanotubes closely adhered to BiOX nanosheets. J. Taiwan Inst. Chem. Eng., vol. 131, 2022, doi: 10.1016/j.jtice.2021.11.014.
- 15. Long M., Hu P., Wu H., Cai J., Tan B., Zhou B. 2016. Efficient visible light photocatalytic heterostructure of nonstoichiometric bismuth oxyiodide and iodine intercalated Bi2O2CO3. Appl. Catal. B Environ., 184, 20–27. doi: 10.1016/j.apcatb.2015.11.025.
- 16. Medina J.C. et al. 2016. Sputtered bismuth oxide thin films as a potential photocatalytic material. Catal. Today, 266, 144–152. doi: 10.1016/j.cattod.2015.10.025.
- 17. Barrera-Mota K., Bizarro M., Castellino M., Tagliaferro A., Hernández A., Rodil S.E. 2015. Spray deposited β-Bi2O3 nanostructured films with visible photocatalytic activity for solar water treatment. Photochem. Photobiol. Sci., 14(6), 1110–1119. doi: 10.1039/c4pp00367e.
- 18. Correia F.C., Calheiros M., Marques J., Ribeiro J.M., Tavares C.J. 2018. Synthesis of Bi2O3/TiO2 nanostructured films for photocatalytic applications. Ceram. Int., 44(18), 22638–22644. doi: 10.1016/j.ceramint.2018.09.040.
- 19. Utami B.A., Sutanto H., Alkian I., Sa’Adah F., Hidayanto E. Efficient degradation of amoxicillin using Bi2O3/Fe synthesized by microwave-assisted precipitation method. Cogent Eng., 9(1), 2022, doi: 10.1080/23311916.2022.2119534.
- 20. Coronado-Castañeda R.R.S., M. L. Maya-Treviño, E. Garza-González, J. Peral, M. Villanueva-Rodríguez, A. Hernández-Ramírez. 2020. Photocatalytic degradation and toxicity reduction of isoniazid using β-Bi2O3 in real wastewater. Catal. Today, 341, 82–89. doi: 10.1016/j.cattod.2019.01.028.
- 21. Han S., Li J., Yang K., Lin J. 2015. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Cuihua Xuebao/Chinese J. Catal., 36(12), 2119–2126. doi: 10.1016/S1872-2067(15)60974-3.
- 22. Chahkandi M., Zargazi M. 2020. New water based EPD thin BiVO4 film: Effective photocatalytic degradation of Amoxicillin antibiotic. J. Hazard. Mater., 389. doi: 10.1016/j.jhazmat.2019.121850.
- 23. Mane V., Dake D., Raskar N., Sonpir R., Stathatos E., Dole B. 2024. A review on Bi2O3 nanomaterial for photocatalytic and antibacterial applications. Chem. Phys. Impact, 8(January), 100517. doi: 10.1016/j.chphi.2024.100517.
- 24. Orozco-Hernández G., Olaya-Flórez J., Pineda-Vargas C., Alfonso J.E., Restrepo-Parra E., Structural, chemical and electrochemical studies of bismuth oxide thin films growth via Unbalanced Magnetron Sputtering. Surfaces and Interfaces, 21. Elsevier, 2020. doi: 10.1016/j.surfin.2020.100627.
- 25. Bandoli G., Barreca D., Brecacin E., Rizzi G.A., Tondello E. 1996. Pure and mixed phase Bi2O3 thin f ilms obtained by metal organic chemical vapor deposition. Chem. Vap. Depos., 2(6), 238–242. doi: 10.1002/cvde.19960020605.
- 26. Condurache-Bota S., Tigau N., Constantinescu C. 2020. Effect of substrate temperature on bismuth oxide thin films grown by pulsed laser deposition. SN Appl. Sci., 2(3), 1–10. doi: 10.1007/s42452-020-2217-2.
- 27. Gadhi T.A., Gómez-Velázquez L.S., Bizarro M., Hernández-Gordillo A., Tagliaferro A., Rodil S.E. 2017. Evaluation of the photodiscoloration efficiency of β-Bi2O3 films deposited on different substrates by pneumatic spray pyrolysis. Thin Solid Films, 638, 119–126. doi: 10.1016/j.tsf.2017.07.037.
- 28. Sahoo A.K., Panigrahi M.R. 2022. Structural analysis, FTIR study and optical characteristics of graphene doped Bi2O3 thin film prepared by modif ied sol–gel technique. Results Chem., 4(October), 100614, 2022, doi: 10.1016/j.rechem.2022.100614.
- 29. Armelao L., Colombo P., Fabrizio M. 2002. Synthesis of Bi2O3 and Bi4(SiO4)3 Thin Films by the SolGel Method. Entomol. Exp. Appl., 103(3), 239–248. doi: 10.1023/A.
- 30. Xiaohong W., Wei Q., Weidong H. 2007. Thin bismuth oxide films prepared through the solgel method as photocatalyst. J. Mol. Catal. A Chem., 261(2), 167–171, 2007. doi: 10.1016/j.molcata.2006.08.016.
- 31. Ilsatoham M.I., Alkian I., Azzahra G., Hidayanto E., Sutanto H. 2022. Effect of substrate temperature on the properties of Bi2O3 thin films grown by solgel spray coating. Results Eng., 17, 100991. doi: 10.1016/j.rineng.2023.100991.
- 32. Wang J. et al. 2023. One-step fabrication of Cudoped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation. J. Colloid Interface Sci., 638, 427–438. doi: 10.1016/j. jcis.2023.02.005.
- 33. Ravele M.P., Oyewo O.A., Ramaila S., Mavuru L., Onwudiwe D.C. 2022. Facile synthesis of copper oxide nanoparticles and their applications in the photocatalytic degradation of acyclovir. Results Eng., 14(May), 100479. doi: 10.1016/j.rineng.2022.100479.
- 34. Morales-Mendoza J.E., Herrera-Pérez G., Fuentes-Cobas L., Hermida-Montero L.A., Pariona N., Paraguay-Delgado F. 2023. Synthesis, structural and optical properties of Cu doped ZnO and CuOZnO composite nanoparticles. Nano-Structures and Nano-Objects,
- 34, 100967. doi: 10.1016/j.nanoso.2023.100967.
- 35. Hemathangam S., Thanapathy G., Muthukumaran S. 2016. Optical, structural, FTIR and photoluminescence characterization of Cu and Al doped CdS thin films by chemical bath deposition method. J. Mater. Sci. Mater. Electron., 27(7), 6800–6808. doi: 10.1007/s10854-016-4630-2.
- 36. Ma Z., Ren F., Ming X., Long Y., Volinsky A.A. Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials (Basel)., 12(1), 2019. doi: 10.3390/ma12010196.
- 37. Mani Menaka S., Umadevi G., Manickam M. 2017. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis. Mater. Chem. Phys., 191, 181–187. doi: 10.1016/j.matchemphys.2017.01.048.
- 38. Manouchehri I., Mehrparvar D., Moradian R., Gholami K., Osati T. 2016. Investigation of structural and optical properties of copper doped NiO thin films deposited by RF magnetron reactive sputtering. Optik (Stuttg)., 127(19), 8124–8129. doi: 10.1016/j.ijleo.2016.06.005.
- 39. Nuaman R.T., Ali H.S. 2022. Study of the structural and optical properties of Bi2O3:Cu Thin FIlms as a Function of Different Doped Ratios. Math. Statictician Eng. Appl., 71(32), 1306–1315. doi: 10.1016/j.apsusc.2014.09.117.
- 40. Mane V.A., Dake D.V., Raskar N.D., Sonpir R.B., Stathatos E., Dole B.N. 2023. Magneto-optical properties of Fe-doped bismuth oxide nanorods for photocatalytic and antimicrobial applications. Results Chem., 6(August), 101083. doi: 10.1016/j.rechem.2023.101083.
- 41. Liu G., Lin Y., Li S., Shi C., Zhang D., Chen L. 2023. Degradation of ciprofloxacin by persulfate activated by Fe(III)-doped BiOCl composite photocatalyst. Environmental Science and Pollution Research, 30(37), 87830–87850. doi: 10.1007/s11356-023-28490-0.
- 42. Kaur A., Kansal S.K. 2016. Bi2WO6 nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem. Eng. J., 302, 194–203. doi: 10.1016/j.cej.2016.05.010.
- 43. Alothman A.A. et al. 2023. Facile synthesis and comparative study of the enhanced photocatalytic degradation of two selected dyes by TiO2-g-C3N4 composite. Environ. Sci. Pollut. Res., 30(13), 37332–37343. doi: 10.1007/s11356-022-24839-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a61ddbe-3055-44d8-89ff-2e41e3b5ebc0