PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An Extended Version of the Proportional Adaptive Algorithm Based on Kernel Methods for Channel Identification with Binary Measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, kernel methods have provided an important alternative solution, as they offer a simple way of expanding linear algorithms to cover the non-linear mode as well. In this paper, we propose a novel recursive kernel approach allowing to identify the finite impulse response (FIR) in non-linear systems, with binary value output observations. This approach employs a kernel function to perform implicit data mapping. The transformation is performed by changing the basis of the data In a high-dimensional feature space in which the relations between the different variables become linearized. To assess the performance of the proposed approach, we have compared it with two other algorithms, such as proportionate normalized least-meansquare (PNLMS) and improved PNLMS (IPNLMS). For this purpose, we used three measurable frequency-selective fading radio channels, known as the broadband radio access Network (BRAN C, BRAN D, and BRAN E), which are standardized by the European Telecommunications Standards Institute (ETSI), and one theoretical frequency selective channel, known as the Macchi’s channel. Simulation results show that the proposed algorithm offers better results, even in high noise environments, and generates a lower mean square error (MSE) compared with PNLMS and IPNLMS.
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
  • Laboratory of Innovation in Mathematics, Applications and Information Technologies (LIMATI), Sultan Moulay Slimane University, Beni Mellal, Morocco
autor
  • Laboratory of Innovation in Mathematics, Applications and Information Technologies (LIMATI), Sultan Moulay Slimane University, Beni Mellal, Morocco
autor
  • Laboratory of Innovation in Mathematics, Applications and Information Technologies (LIMATI), Sultan Moulay Slimane University, Beni Mellal, Morocco
Bibliografia
  • [1] S. Haykin, “Adaptive Filter Theory”, fourth ed., Prentice Hall, Delhi, 2002 (ISBN: 9780130901262).
  • [2] M.M. Sondhi, “The history of echo cancellation”, IEEE Signal Processing Magazine, vol. 23, no. 5, pp. 95–102, 2006 (DOI:10.1109/MSP.2006.1708416).
  • [3] A.H. Sayed, “Fundamentals of Adaptive Filtering”, John Wiley & Sons, 2003 (ISBN: 9780471461265).
  • [4] P.S.R. Diniz, “Adaptive Filtering: Algorithms and Practical Implementations”, Springer, 2008 (DOI: 10.1007/978-0-387-68606-6).
  • [5] L. Ljung, “System identification: theory for the user”, Upper Saddle River (NJ): Prentice Hall PTR, 1999 (DOI:10.1002/047134608x.w1046).
  • [6] E. Ferrara, “Fast implementations of LMS adaptive filters”, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28, no. 4, pp. 474–475, 1980 (DOI: 10.1109/tassp.1980.1163432).
  • [7] B. Widrow and S.D. Stearns, “Adaptive Signal Processing”, Upper Saddle River: Prentice – Hall, 1985 (ISBN: 9780130040299).
  • [8] R. Martinek, J. Rzidky, R. Jaros, P. Bilik, and M. Ladrova, “Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control”, Energies, vol. 12, no. 8, pp. 1545, 2019 (DOI: 10.3390/en12081545).
  • [9] D. Etter, “Identification of sparse impulse response systems Rusing an adaptive delay filter”, In 1985 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, vol. 10, pp. 1169–1172, 1985 (DOI: 10.1109/icassp.1985.1168275).
  • [10] D.L. Duttweiler, “Proportionate normalized least-mean-squares adaptation in echo cancelers”, IEEE Transactions on speech and audio processing, vol. 8, no. 5, pp. 508–518, 2000 (DOI: 10.1109/89.861368).
  • [11] J. Benesty and S.L. Gay, “An improved PNLMS algorithm”, In 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. II-1881–II-1884, 2002 (DOI:10.1109/icassp.2002.5744994).
  • [12] H. Deng and M. Doroslovacki, “Improving convergence of the PNLMS algorithm for sparse impulse response identification”, IEEE Signal Processing Letters, vol. 12, no. 3, pp. 181–184, 2005 (DOI:10.1109/lsp.2004.842262).
  • [13] P.A. Naylor, J. Cui, and M. Brookes, “Adaptive algorithms for sparse echo cancellation”, Signal Processing, vol. 86, no. 6, pp. 1182–1192, 2006 (DOI: 10.1016/j.sigpro.2005.09.015).
  • [14] L. Liu, M. Fukumoto, and S. Saiki, “An improved μ-law proportionate NLMS algorithm”, In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2008, pp. 3797–3800. (DOI: 10.1109/icassp.2008.4518480).
  • [15] Y. Gu, J. Jin, and S. Mei, “l0 norm constraint LMS algorithm for sparse system identification”, IEEE Signal Processing Letters, vol. 16, no. 9, pp. 774–777, 2009 (DOI: 10.1109/lsp.2009.2024736).
  • [16] Z. Jin, X. Ding, Z. Jiang, and Y. Li, “An Improved μ-law Proportionate NLMS Algorithm for Estimating Block-Sparse Systems”, In 2019 IEEE 2nd International Conference on Electronic Information and Communication Technology (ICEICT), IEEE, pp. 205–209, 2019 (DOI: 10.1109/iceict.2019.8846290).
  • [17] Y. Chen, Y. Gu, and A.O. Hero, “Sparse LMS for system identification”, In 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 3125–3128, 2009 (DOI:10.1109/icassp.2009.4960286).
  • [18] Y. Li and M. Hamamura, “Zero-attracting variable-step-size east mean square algorithms for adaptive sparse channel estimation”, International Journal of Adaptive Control and Signal Processing, vol. 29, no. 9, pp. 1189–1206, 2015 (DOI: 10.1002/acs.2536).
  • [19] Y. Li, Y. Wang, F. Albu, and J. Jiang, “A general zero attraction proportionate normalized maximum correntropy criterion algorithm for sparse system identification”, Symmetry, vol. 9, no. 10, pp. 229, 2017 (DOI: 10.3390/sym9100229).
  • [20] O. Nelles, “Nonlinear System Identification: From Classical Approaches to Neural Networks, Fuzzy Models, and Gaussian Processes”, Springer Nature, 2020 (DOI: 10.1007/978-3-030-47439-3).
  • [21] S.A. Billings and S. Chen, “Identification of non-linear national systems using a prediction-error estimation algorithm”, International Journal of Systems Science, vol. 20, no. 3, pp. 467–494, 1989 (DOI:10.1080/00207728908910143).
  • [22] F. Ding, X.P. Liu, and G. Liu, “Identification methods for Hammerstein nonlinear systems”, Digital Signal Processing, vol. 21, no. 2, pp. 215–238, 2011 (DOI: 10.1016/j.dsp.2010.06.006).
  • [23] R. Fateh, A. Darif, and S. Safi, “Performance Evaluation of MCCDMA Systems with Single User Detection Technique using Ker- nel and Linear Adaptive Method”, Journal of Telecommunications and Information Technology, no. 4, pp. 1–11 2021 (DOI:10.26636/jtit.2021.151621).
  • [24] R. Fateh and A. Darif, “Mean Square Convergence of Reproducing Kernel for Channel Identification: Application to Bran D Channel Impulse Response”, International Conference on Business Intelligence, pp. 284–293, 2021 (DOI: 10.1007/978-3-030-76508-8_20).
  • [25] R. Fateh, A. Darif, and S. Safi, “Channel Identification of Non-linear Systems with Binary-Valued Output Observations Based on Positive Definite Kernels”, E3S Web of Conferences, EDP Sciences, vol. 297, 2021 (DOI: 10.1051/e3sconf/202129701020).
  • [26] M. Zidane, S. Safi, and M. Sabri, “Compensation of fading channels using partial combining equalizer in MC-CDMA systems”, J. of Telecommun. and Informat. Technol., no. 1, pp. 5–11, 2017 (http://dlibra.itl.waw.pl/dlibra-webapp/Content/1962/ISSN_1509-4553_1_2017_5.pdf).
  • [27] S. Safi, M. Frikel, A. Zeroual, and M. M’Saad, “Higher order cumulants for identification and equalization of multicarrier spreading spectrum systems”, J. of Telecommun. and Informat. Technol., vol. 2, no. 1, pp. 74–84, 2011 (https://www.itl.waw.pl/czasopisma/JTIT/2011/2/74.pdf),
  • [28] R. Fateh, A. Darif, and S. Safi, “Kernel and Linear Adaptive Methods for the BRAN Channels Identification”, In International Conference on Advanced Intelligent Systems for Sustainable Development, pp. 579–591, 2020 (DOI: 10.1007/978-3-030-90639-9_47).
  • [29] R. Fateh, A. Darif, and S. Safi, “Identification of the Linear Dynamic Parts of Wiener Model Using Kernel and Linear Adaptive”, In International Conference on Advanced Intelligent Systems for Sustainable Development, pp. 387–400, 2020 (DOI:10.1007/978-3-030-90639-9_31).
  • [30] E. Eskinat, S.H. Johnson, and W.L. Luyben, “Use of Hammerstein models in identification of nonlinear systems”, AIChE Journal, vol. 37, no. 2, pp. 255–268, 1991 (DOI: 10.1002/aic.690370211).
  • [31] S.A. Billings, “Identification of nonlinear systems-a survey”, IEE Proceedings D-Control Theory and Applications, IET, vol. 127, no. 6, pp. 272–285, 1980 (DOI: 10.1049/ip-d:19800047).
  • [32] A. Stenger and R. Rabenstein, “Adaptive Volterra filters for nonlinear acoustic echo cancellation”, IEEE Workshop Nonlinear Signal Image Process (NSIP), vol. 2, pp. 679–683, 1999 (http://www.eurasip.org/Proceedings/Ext/NSIP99/Nsip99/papers/146.pdf).
  • [33] L. Janjanam, S.K. Saha, R. Kar, and D. Mandal, “Volterra filter modelling of non-linear system using artificial electric field algorithm assisted Kalman filter and its experimental evaluation”, ISA transactions, 2020 (DOI: 10.1016/j.isatra.2020.09.010).
  • [34] T. Ogunfunmi, “Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches”, Springer Science, 2007 (ISBN 9780387263281).
  • [35] S. Haykin, “Neural Networks and Learning Machines, Englewood Cliffs”, Prentice-Hall, 2009 (ISBN 9780387263281).
  • [36] N. Aronszajn, “Theory of reproducing kernels”, Transactions of the American mathematical society, vol. 68, no. 3, pp. 337–404, 1950.
  • [37] J. Shawe-Taylor and N. Cristianini, “Kernel methods for pattern analysis”, Cambridge university: press, 2004 (DOI:10.1017/CBO9780511809682).
  • [38] W. Liu, J.C. Principe, and S. Haykin, “Kernel adaptive filtering: a comprehensive introduction”, John Wiley & Sons, vol. 57, 2011 (ISBN: 9780470447536).
  • [39] G. Camps-Valls and L. Bruzzone, “Kernel methods for remote sensing data analysis”, John Wiley & Sons, 2009 (DOI:10.1002/9780470748992).
  • [40] C. Cortes and V. Vapnik, “Support-vector networks”, Machine learning, vol. 20, no. 3, pp. 273–297, 1995 (DOI: 10.1007/bf00994018).
  • [41] B. Scholkopf and A.J. Smola, “Learning with kernels: support vector machines, regularization, optimization, and beyond, Adaptive Computation and Machine Learning series”, MIT Press, 2001 (https://alex.smola.org/papers/2001/SchHerSmo01.pdf).
  • [42] Z. Momani, M. Al-Shridah, O.A. Arqub, M. Al-Momani, and S. Momani, “Modeling and analyzing neural networks using reproducing kernel Hilbert space algorithm”, Appl Math Inf Sci. vol. 12, pp. 89–99, 2018 (DOI: 10.18576/amis/120108).
  • [43] O.A. Arqub and H. Rashaideh, “The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs”, Neural Computing and Applications, vol. 30, no. 8, pp. 2595–2606, 2018 (DOI: 10.1007/s00521-017-2845-7).
  • [44] H. Sun, “Mercer theorem for RKHS on noncompact sets”, Journal of Complexity, vol. 21, no. 3, pp. 337–349, 2005 (DOI:10.1016/j.jco.2004.09.002).
  • [45] W. Liu, P.P. Pokharel, and J.C. Principe, “The kernel least-meansquare algorithm”, IEEE Transactions on Signal Processing, vol. 56, no. 2, pp. 543–554, 2008 (DOI: 10.1109/tsp.2007.907881).
  • [46] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm”, IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2275–2285, 2004 (DOI: 10.1109/tsp.2004.830985).
  • [47] W. Liu and J.C. Principe, “Kernel affine projection algorithms”, EURASIP Journal on Advances in Signal Processing, vol. 2008, pp. 1–12, 2008 (DOI: 10.1155/2008/784292).
  • [48] R. Castro Garcia, “Structured nonlinear system identification Rusing kernel-based methods, Ph.D. dissertation”, Faculty of Engineering Science, 2017 (https://lirias.kuleuven.be/retrieve/473580).
  • [49] B. Chen, S. Zhao, P. Zhu, and J.C. Principe, “Quantized kernel least mean square algorithm”, IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, 2011 (DOI:10.1109/tnnls.2011.2178446).
  • [50] B. Chen, S. Zhao, P. Zhu, and J.C. Principe, “Quantized kernel recursive least squares algorithm”, IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 9, pp. 1484–1491, 2013 (DOI:10.1109/tnnls.2013.2258936).
  • [51] S. Wang, Y. Zheng, and C. Ling “Regularized kernel least mean square algorithm with multiple-delay feedback”, IEEE Signal Processing Letters, vol. 23, no. 1, pp. 98–101, 2015 (DOI:10.1109/lsp.2015.2503000).
  • [52] B. Chen, J. Liang, N. Zheng, and J.C. Principe, “Kernel east mean square with adaptive kernel size”, Neurocomputing, vol. 191, pp. 95–106, 2016 (DOI: 10.1016/j.neucom.2016.01.004).
  • [53] W. Liu, I. Park, Y. Wang, and J.C. Principe, “Extended kernel recursive least squares algorithm”, IEEE Transactions on Signal Processing, vol. 57, no. 10, pp. 3801–3814, 2009 (DOI:10.1109/tsp.2009.2022007).
  • [54] H. Zhou, J. Huang, and F. Lu, “Reduced kernel recursive east squares algorithm for aero-engine degradation prediction”, Mechanical Systems and Signal Processing, vol. 95, pp. 446–467, 2017 (DOI:10.1016/j.ymssp.2017.03.046).
  • [55] M. Zidane and R. Dinis, “A new combination of adaptive channel estimation methods and TORC equalizer in MC-CDMA systems”, International Journal of Communication Systems, vol. 33, no. 11, pp. e4429, 2020 (DOI: 10.1002/dac.4429).
  • [56] C.J. Burges, “A tutorial on support vector machines for pat tern recognition”, Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998 (DOI: 10.1023/a:1009715923555).
  • [57] A. Sanchez and V. David, “Advanced support vector machines and kernel methods”, Neurocomputing, vol. 55, no. 1–2, pp. 5–20, 2003 (DOI: 10.1016/s0925-2312(03)00373-4).
  • [58] U. Soverini and T. Soderstrom, “Frequency domain identification of FIR models in the presence of additive inputoutput noise”, Automatica, vol. 115, pp. 108879, 2020 (DOI:10.1016/j.automatica.2020.108879).
  • [59] H. Zhang, T. Wang, and Y. Zhao, “Asymptotically Efficient Recursive Identification of FIR Systems With Binary-Valued Observations”, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 5, pp. 2687–2700, 2019 (DOI:10.1109/tsmc.2019.2916022).
  • [60] J. Guo, Y. Zhao, C.Y. Sun, and Y. Yu, “Recursive identification of FIR systems with binary-valued outputs and Communications channels”, Automatica, vol. 60, pp. 165–172, 2015 (DOI:10.1016/j.automatica.2015.06.030).
  • [61] T. Yuan, Q. Liu, and J. Guo, “Identification of FIR Systems with Quantized Input and Binary-Valued Observations Under A Priori Parameter Constraint”, 39th Chinese Control Conference (CCC), IEEE, pp. 1099–1104, 2020 (DOI: 10.23919ccc50068.2020.9188983).
  • [62] M. Pouliquen, T. Menard, E. Pigeon, O. Gehan, and A. Goudjil, “Recursive system identification algorithm using binary measurements”, 2016 European Control Conference (ECC), IEEE, pp. 1353–1358, 2016 (DOI: 10.1109/ecc.2016.7810477).
  • [63] C.J. Burges, “A tutorial on support vector machines for pat tern recognition”, Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998 (DOI: 10.1023/a:1009715923555).
  • [64] O. Macchi and C.A. Faria da Roccha, “Travassos-Romano JM. Egalisation adaptative autodidacte par retroprediction et prediction”, XIV colloque GRETSI, pp. 491–493, 1993 (http://www.gretsi.fr/data/colloque/pdf/1993_017-0005_11877.pdf).
  • [65] ETSI. “Broadband radio access network (BRAN); hyperlan type 2; physical layer”, Technical report, 2001 (https://www.etsi.org/deliver/etsits/101400101499/101475/01.02.0260/ts101475v010202p.pdf).
  • [66] ETSI. “Broadband Radio Access Network (BRAN); hyperlan type 2; Requirements and architectures for wireless broadband access”, 1999 (https://www.etsi.org/deliver/etsitr/101000101099/101031/02.02.0160/tr101031v020201p.pdf).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a59a02b-2f0b-4acb-afb3-85e6f87d7eb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.