PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of MCM-41 Supported Benzene Sulphonic Acid, a Catalyst for the Synthesis of CL-20 from TAIW

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pure MCM-41 anchored benzene sulphonic acid (BSA/MCM-41), an efficient heterogeneous catalyst, was prepared for the synthesis of CL-20 from TAIW. The prepared catalysts were fully characterized by FTIR, XRD, TEM, TG, N2 adsorption techniques, elemental analysis and acidity tests. It was observed that the catalyst (BSA/MCM-41) retained the mesoporous structure like MCM-41, exhibited excellent thermal stability and high activity. Compared with a blank, the high catalytic activity promoted shorter reaction times by a factor of 3/5. In addition, this catalyst could be reused at least five times without significant loss of its catalytic potential. Moreover, the BSA/MCM-41 catalyst exhibited an optimal catalytic performance, with a high to excellent yield of CL-20 (92.5%) with a purity of 98.3%, under the optimum synthesis conditions.
Słowa kluczowe
Rocznik
Strony
343--359
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
autor
  • School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
autor
  • ZNDY Ministerial Key Laboratory, Nanjing University of Science and Technology, 200 Xiaoling Rd, Nanjing, 210094, China
Bibliografia
  • [1] Nielsen, A.T.; Chan, M.L.; Kraeutle, C.K. Polynitropolyazacaged Explosives, Part 7. NWC TP 7200[R], China Lake Naval Weapons Center, 1989.
  • [2] Nair, U.R.; Asthana, S.N.; Rao, A.S.; Gandhe, B.R. Advances in High EnergyMaterials. Def. Sci. J. 2010, 60: 137-151.
  • [3] Agrawal, J.P. Some New High Energy Materials and Their Formulations for Specialized Applications. Propellants Explos. Pyrotech. 2005, 30: 316-332.
  • [4] Nair, U.; Sivabalan, R.; Gore, G.; Geetha, M.; Asthana, S.; Singh, H.Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-Based Formulations. Combust. Explos. Shock Waves 2005, 41: 121-132.
  • [5] Latypov, N.V.; Wellmar, U.; Goede, P.; Bellamy, A.J. Synthesis and Scale-Up of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20). J. Org. Process Res. Dev. 2000, 4(3): 156-158.
  • [6] Bayat, Y.; Ahari Mostafavi, M.M.; Hasani, N. [Hmim][HSO4], a Green and Recyclable Acidic Ionic Liquid Medium for the One-Pot Nitration of TADB to HNIW. Propellants Explos. Pyrotech. 2014, 39: 649-652.
  • [7] Yan, G.; Yang, M. Recent Advances in the Synthesis of Aromatic Nitro Compounds. Cheminform. 2013, 44: 2554-2566.
  • [8] Sheemol, V.; Tyagi, B.; Jasra, R. Nitration of O-xylene over Rare Earth Cations Exchanged Zeolite-b with Nitric Acid and Acetic Anhydride. J. Mol. Catal. A: Chem. 2006, 252: 194-201.
  • [9] Bayat, Y.; Hajighasemali, F. [Hmim][HSO4], Synthesis of CL-20 by a Greener Method Using Nitroguanidine/HNO3. Propellants Explos. Pyrotech. 2016, 41: 20-23.
  • [10] Hu, X.L.; Wu, Q.J.; Qian, H. Synthesis of CL-20 by Nitrolysis of TAIW with N2O5/HNO3. (in Chinese) Chin. J. Explos. Propellants (Huozhayao Xuebao) 2015, 38: 35-38.
  • [11] Kai, W.; Dong, B.; Yang, C.F.; Qian, H. Acidic Ionic Liquids and Green and Recyclable Catalysts in the Clean Nitration of TAIW to CL-20 Using HNO3 Electrolyte. Can. J. Chem. 2017, 95: 190-193.
  • [12] Shi, L.; Kai, W.; Yang, C.-F.; Qian, H.; Liu, D.-B.; Pan, R.-M. Synthesis, Characterization of Nafion-functionalized MCM-41 and Its Catalytic Application in Preparation of CL-20 via HNO3 Electrolyte Involved Nitration of TAIW. J. Saudi Chem. Soc. 2018, 22: 588-593.
  • [13] Bu, L.; Dong, B.; Qian, H.; Zhen, J. Economic Preparation of CL-20 by Nitrolysis of TAIW Using Surfactants as Catalyst. (in Chinese) Explosive Materials 2016, 45: 25-28.
  • [14] Dong, B.; Qian, H.; Ren, L.P. A Nitrolysis Method to Synthesize CL-20 with High Yield and Low Pollution. (in Chinese) Chin. J. Energ. Mater. (Hanneng Cailiao) 2016, 24: 571-575.
  • [15] Mizuno, N.; Misono, M. Heteropolyacid Catalysts. Curr. Opin. Solid St. M. Sci. 1997, (2): 84-89.
  • [16] Fotouhi-Far, F.; Bashiri, H.; Hamadanian, M. Study of Deactivation of Pd(OH)2/C Catalyst in Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane. Propellants Explos. Pyrotech. 2017, 42(2): 213-219.
  • [17] Fotouhi-Far, F.; Bashiri, H.; Hamadanian, M.; Keshavarz, M.H. Increment of Activity of Pd(OH)2/C Catalyst in Order to Improve the Yield of High Performance 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW). Inorg. Nano- Met. Chem. 2017, 47(11): 1489-1494.
  • [18] Harrar, J.E.; Pearson, R.K. Electrosynthesis of N2O5 by Controlled-Potential Oxidation of N2O4 in Anhydrous HNO3. J. Electrochem. Soc. 1983, 130: 108-112.
  • [19] Harrar, J.E.; Quong, R.; Rigdon, L.P.; McGuire, R.R. Scale-Up Studies of the Electrosynthesis of Dinitrogen Pentoxide in Nitric Acid. J. Electrochem. Soc. 1997, 144(6): 2032-204.
  • [20] Marshall, R.J.; Shiffin, D.J.; Walsh, W.C.; Bagg, G.E.G. The Electrochemical Generation of N2O5. Patent EP 0295878B1, 1991.
  • [21] Chapman, R.D.; Smith, G.D. Separation of Dinitrogen Pentoxide from Its Solutions in Nitric Acid. In: Nitration (Albright, L.F.; Carr, R.V.C.; Schmitt, R.J., Eds), American Chemical Society: Washington, 1996, Chapter 9, p. 78; ISBN: 9780841233935.
  • [22] Estifaee, P.; Haghighi, M.; Babaluo, A.A.; Rahemi, N.; Fallah Jafari, M. The Beneficial Use of Non-thermal Plasma in Synthesis of Ni/Al2O3-MgO Nanocatalyst Used in Hydrogen Production from Reforming of CH4/CO2 Greenhouse Gases. J. Power Sources 2014, 257: 364-373.
  • [23] Abbasi, Z.; Haghighi, M.; Fatehifar, E.; Saedy, S. Synthesis and Physicochemical Characterization of Nanostructured Pt/CeO2 Catalyst Used for Total Oxidation of Toluene. Int. J. Chem. Reactor Eng. 2011, (9): 1-19.
  • [24] Khoshbin, R.; Haghighi, M. Urea-nitrate Combustion Synthesis and Physicochemical Characterization of CuO-ZnO-Al2O3 Nanoparticles over HZSM-5. Chin. J. Inorg. Chem. 2012, 28(9): 1967-1978.
  • [25] Jamalzadeh, Z.; Haghighi, M.; Asgari, N. Synthesis, Physicochemical Characterizations and Catalytic Performance of Pd/Carbon-Zeolite and Pd/Carbon-CeO2 Nanocatalysts Used for Total Oxidation of Xylene at Low Temperatures. Front. Environ. Sci. Eng. 2013, (7): 365-381.
  • [26] Sajjadi, S.M.; Haghighi, M.; Eslami, A.A.; Rahmani, F. Hydrogen Production via CO2-Reforming of Methane Over Cu and Co Doped Ni/Al2O3 Nanocatalyst: Impregnation versus Sol-gel Method and Effect of Process Conditions and Promoter. J. Sol-Gel. Sci. Technol. 2013, 67: 601-617.
  • [27] Vafaeian, Y.; Haghighi, M.; Aghamohammadi, S. Ultrasound Assisted Dispersion of Different Amount of Ni Over ZSM-5 Used as Nanostructured Catalyst for Hydrogen Production via CO2 Reforming of Methane. Energy Convers. Manage. 2013, 76: 1093-1103.
  • [28] Buzzoni, R.; Bordiga, S.; Ricchiardi, G.; Spoto, G.; Zecchina, A. Interaction of H2O, CH3OH, (CH3)2O, CH3CN, and Pyridine with the Superacid Perfluorosulfonic Membrane Nafion: An IR and Raman Study. J. Phys. Chem. 1995, 99: 307-311.
  • [29] Zecchina, A.; Geobaldo, F.; Spoto, G.; Bordiga, S.; Ricchiardi, G.; Buzzoni, R.; Petrini, G. FTIR Investigation of the Formation of Neutral and Ionic Hydrogen-Bonded Complexes by Interaction of H-ZSM-5 and H-Mordenite with CH3CN and H2O: Comparison with the H-NAFION Superacidic System. J. Phys. Chem. 1996, 100: 16584-16599.
  • [30] Mercedes, A.; Avelino, C.; Debasish, D.; Vicente, F.; Hermenegildo, G. “Nafion”- functionalized Mesoporous MCM-41 Silica Shows High Activity and Selectivity for Carboxylic Acid Esterification and Friedel-Crafts Acylation Reactions. J. Catal. 2005, 231: 48-55.
  • [31] Sing, K.S.W.; Everrett, D.H.; Haul, R.A.W.; Moscow, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985, 57: 603-619.
  • [32] Zhang, C.; Yu, M.J.; Pan, X.Y. Regioselective Mononitration of Chlorobenzene Using Caprolactam-based Brønsted Acidic Ionic Liquids. J. Mol. Catal. A: Chem. 2014, 383: 101-105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a55e8df-438d-496b-a3f3-aa881ccaed6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.