PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of the grey incidence analysis in the inland waterway transport system assessment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inland waterway transport (IWT) is currently in focus for EU countries due to a shift in policy towards a more sustainable and green economy. The aim of this article is to analyze the possibility of using a grey incidence analysis (GIA) to identify key factors related to the functioning of the IWT system. GIA is classified as a multi-criteria decision-making method and is one of the key applications of grey systems theory (GTS), i.e., systems with incomplete and uncertain information about structure and behavior. GIA identifies the most favorable (or quasi-preferred) system characteristics and the most favorable (or quasi-preferred) system factors. The identification of such characteristics and factors enables a reduction in the inconsistencies in decision making on the functioning of the system. The application of the GIA to the assessment of the IWT system is an original concept.
Rocznik
Strony
57--64
Opis fizyczny
Bibliogr. 59 poz., tab.
Twórcy
autor
  • Częstochowa University of Technology 69 J.H. Dąbrowskiego St., 42-201 Częstochowa, Poland
Bibliografia
  • 1. Al Enezy, O., Van Hassel, E., Sys, C. & Vanelslander, T. (2017) Developing a cost calculation model for inland navigation. Research in Transportation Business & Management 23, pp. 64–74.
  • 2. Charlier, J. & Ridolfi, G. (1994) Intermodal transportation in Europe: of modes, corridors and nodes. Maritime Policy and Management 21(3), pp. 237–250.
  • 3. COM (2006) Communication from the Commission on the promotion of inland waterway transport “NAIADES” – an integrated European action programme for inland waterway transport, COM/2006/0006 final {SEC(2006) 34}. Available from: eur-lex.europa.eu/ [Accessed: May 04, 2022].
  • 4. COM (2013) Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee of the regions, Towards quality inland waterway transport NAIADES II / COM/2013/0623 final. Available from: eur-lex.europa.eu/ [Accessed: May 04, 2022].
  • 5. Cui, J.F., Zhou, R.J. & Liu, R. (2009) Grey incidence analysis based on coefficient of determination and its economic application with the data of Central Henan Urban Agglomeration. IEEE International Conference on Grey Systems and Intelligent Services, pp. 32–36.
  • 6. Deng, J.L. (1989) Introduction of grey system theory. Journal of Grey Systems 1, pp. 1–24.
  • 7. Dvorak, Z., Rehak, D., David, A. & Cekerevac, Z. (2020) Qualitative approach to environmental risk assessment in transport. International Journal of Environmental Research and Public Health 17 (15), 5494.
  • 8. EC (2011) White Paper 2011. Roadmap to a Single European Transport Area – Towards a competitive and resource efficient transport system. European Commission, Brussels.
  • 9. EUROSTAT (2022) Inland waterways transport. [Online]. Available from: http://ec.europa.eu/eurostat/web/transport/ database [Accessed: April 27, 2022].
  • 10. Fazi, S., Fransoo, J.C. & Van Woensel, T. (2015) A decision support system tool for the transportation by barge of import containers: a case study. Decision Support System 79, pp. 33–45.
  • 11. Fischetti, M. & Toth, P. (1992) An additive bounding procedure for the asymmetric travelling salesman problem. Mathematical programming 53, pp. 173–197.
  • 12. Fraitag, D.N., Popescu-Stelea, M., Moraru, R.I. & Băbuţ, G.B. (2022) Prevention activities in ship loading and uploading operations. MATEC Web of Conferences 354, 00003.
  • 13. Geneletti, D. (2005) Multicriteria analysis to compare the impact of alternative road corridors: a case study in northern Italy. Impact Assessment and Project Appraisal 23(2), pp. 135–146.
  • 14. Goyal, S. & Grover, S. (2012) Applying fuzzy grey relational analysis for ranking the advanced manufacturing systems. Grey Systems: Theory and Application 2(2), pp. 284– 298.
  • 15. Guo, K. & Zhang, Q. (2015) Detecting communities in social networks by local affinity propagation with grey relational analysis. Grey Systems: Theory and Application 5(1), pp. 31–40.
  • 16. Gus-Puszczewicz, A. (2018) Inland waters in the development of inland shipping. Transportation – business operations and sustainable development. Transport Economics and Logistics 77, pp. 33–40.
  • 17. Hekkenberg, R. & Thill, C. (2014) Retrofit solutions for inland ships: The MoVe IT approach. European Inland Waterway Navigation Conference, Budapest, Hungary.
  • 18. Hofbauer, F. & Putz, L.M. (2020) External costs in inland waterway transport: an analysis of external cost categories and calculation methods. Sustainability 12, 5874.
  • 19. Hossain, N.U.I., Amrani, S.E., Jaradat, R., Marufuzzaman, M., Buchanan, R., Rinaudo, C. & Hamilton, M. (2020) Modeling and assessing interdependencies between critical infrastructures using Bayesian network: a case study of inland waterway port and surrounding supply chain network. Reliability Engineering & System Safety 198, 106898.
  • 20. Hrušovsky, M., Demir, E., Jammernegg, W. & Van Woensel, T. (2018) Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty. Flexible Services and Manufacturing Journal 30, pp. 486–516.
  • 21. Jacyna, M. (2001) Modelowanie wielokryterialne w zastosowaniu do oceny systemów transportowych. Prace Naukowe Politechniki Warszawskiej, Transport, z. 47, Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 22. Jacyna, M. (2009) Modelowanie i ocena systemów transportowych. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej.
  • 23. Karimi, T. & Forrest, J. (2014) Analyzing the results of buildings energy audit by using grey incidence analysis. Grey Systems: Theory and Application 4(3), pp. 386–399.
  • 24. Kulczyk, J. & Winter, J. (2003) Śródlądowy transport wodny. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej.
  • 25. Li, J.Y., Notteboom, T.E. & Wang, J.J. (2016) An institutional analysis of the evolution of inland waterway. Geojournal 82, pp. 867–886.
  • 26. Liu, S.F. & Lin, Y. (2010) Grey Systems: Theory and Applications. Berlin: Springer-Verlag.
  • 27. Liu, S., Forrest, J. & Yang, Y. (2012) A brief introduction to grey systems theory. Grey System: Theory and Application 2(2), pp. 89–104.
  • 28. Liu, W., Zhang, J., Wu, C. & Chang, X. (2016) Identifying key industry factors of remanufacturing industry using grey incidence analysis: A case of Jiangsu province. Grey Systems: Theory and Application 6(3), pp. 398–414.
  • 29. Marin, G. & Olaru, M. (2015) Modal strategic decisions in transport and their role in sustainable development: an example from Romania. Procedia Economics and Finance 32, pp. 657–664.
  • 30. Melo, I.C., Alves Junior, P.N., Perico, A.E., Guzman, M.G.S. & Rebelatto, D.A.N. (2017) Benchmarking freight transportation corridors and routes with data envelopment analysis (DEA). Benchmark: An International Journal 25, pp. 713–742.
  • 31. Montwiłł, A. (2014) Trends in the development of European inland freight transport. Scientific Journals, Maritime University of Szczecin 37(109), pp. 67–71.
  • 32. Molnar, E. (2001) Transport policies in the Central and Eastern Europe a decade of integration: results and new challenges. Paris: Transport Policy Forum.
  • 33. Munuzuri, J., Onieva, L., Cortes, P. & Guadix, J. (2020) Using IoT data and applications to improve port-based intermodal supply chains. Computer & Industrial Engineering 139, 105668.
  • 34. Nelson, K.S., Camp, J.V., Philip, C.E. & Abkowitz, M.D. (2017) Agent-based model of navigable inland waterway tow operation procedures. Transportation Research Record: Journal of the Transportation Research Board 2611, pp. 11–18.
  • 35. Petnga, L. & Austin, M. (2016) Model-based design and formal verification processes for automated waterway system operations. Systems 4, 23.
  • 36. Rajesh, R. & Ravi, V. (2015) Supplier selection in resilient supply chains: a grey relational analysis approach. Journal of Cleaner Production 86, pp. 343–359.
  • 37. Rolbiecki, R., Rydzykowski, W. & Wojewódzka-Król, K. (2007) Transport wodny śródlądowy. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego.
  • 38. Rozwój śródlądowych dróg wodnych w Polsce na lata 2016–2020 z perspektywą do 2030 (2016) Załącznik do uchwały Rady Ministrów z dnia 14 czerwca 2017, poz. 711.
  • 39. Semenov, I.N. (2005) Innovative Conceptions Impacts on Development system of Inland Shipping Network. Materiały I Międzynarodowej Konferencji “Inland Shipping 2005” AM, Szczecin.
  • 40. Semenov, I.N. (2006) Inland waterways as a powerful tool for the further development of intermodality. Coastal Ships & Inland Waterways II: International Conference London: The Royal Institution of Naval Architects, pp. 15–25.
  • 41. Smoliński, A. (2014) Klasyfikacja i porównanie metod klasycznej optymalizacji wielokryterialnej. Informatyczne systemy zarządzania. Tom 5. Monografia pod red. K. Bzdyry, Koszalin.
  • 42. Tabor, J. (2018) A grey-based decision-making approach to the improvement of OHS management system. Polish Journal of Management Studies 18(1), pp. 389–402.
  • 43. Tabor, J. (2021) Ranking of management factors for safe maintenance system based on Grey Systems Theory. Production Engineering Archives 27(3), pp. 196–202.
  • 44. Tan, Q., Farquharson, B., Chen, D. & Liu, J. (2014) An analysis of factors influencing the output value of unit sown area based on grey incidence analysis. Grey Systems: Theory and Application 4(1), pp. 56–71.
  • 45. Tanaka, H. & Okada, A. (2019) Effects of market-based measures on a shipping company: using an optimal control approach for long-term modeling. Research in Transportation Economics 73, pp. 63–71.
  • 46. Tołkacz, L. (2010) Infrastruktura transport wodnego, Tom I. Infrastruktura transportu śródlądowego. Wydanie elektroniczne, Szczecin.
  • 47. Tołkacz, L. (2011) Infrastruktura transport wodnego, Tom II. Infrastruktura transportu śródlądowego. Wydanie elektroniczne, Szczecin.
  • 48. Tzannatos, E., Tselentis, B. & Corres, A. (2016) An inland waterway freight service in comparison to land-based alternatives in South-Eastern Europe: energy efficiency and air quality performance. Transport 31, pp. 119–126.
  • 49. Wang, Y., Liu, Q. & Bi, R. (2015) Grey incidence analysis on relationship between China’s OFDI industry layout and industrial structure optimization. IEEE International Conference on Grey Systems and Intelligent Services (GSIS), pp. 122–126, doi: 10.1109/GSIS.2015.7301841.
  • 50. Wang, Y., Zio, E., Wei, X., Zhang, D. & Wu, B. (2019) A resilience perspective on water transport systems: the case of Eastern Star. International Journal of Disaster Risk Reduction 33, pp. 343–354.
  • 51. Wiegmans, B. & Konings, J.W. (2015) Intermodal inland waterway transport: modelling conditions influencing its cost competitiveness. The Asian Journal of Shipping and Logistics 31, pp. 273–294.
  • 52. Wojewódzka-Król, K. (2015) Transport wodny śródlądowy. Funkcjonowanie i rozwój. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego.
  • 53. Wojewódzka-Król, K. & Rolbiecki, R. (2014) Transport wodny śródlądowy. Gdańsk: Wydawnictwo Uniwersytetu Gdańskiego.
  • 54. Woś, K. & Han, M. (2017) Żegluga Odrzańska jako element intermodalnych łańcuchów transportowych. Szczecin: Akademia Morska w Szczecinie.
  • 55. Xie, N., Hu, C. & Yin, S. (2016) Key indexes choosing approach of complex equipment’s development cost based on grey incidence cluster model. Grey Systems: Theory and Application 6(1), pp. 110–123.
  • 56. Załoga, E. (2017) Przesłanki i narzędzia promocji transportu wodnego śródlądowego w Unii Europejskiej. Problemy Transportu i Logistyki 1(37), pp. 323–333.
  • 57. Zhang, M., Janic, M. & Tavasszy, L.A. (2015) A freight transport optimization model for integrated network, service, and policy design. Transportation Research Part E 77, pp. 61–76.
  • 58. Zhu, J., Zhang, S., Chen, Y. & Zhang, L. (2016) A hierarchical clustering approach based on three-dimensional gray relational analysis for clustering a large group of decision makers with double information. Group Decision and Negotiation 25(2), pp. 325–354.
  • 59. Żak, J., Jacyna-Gołda, I. & Wasiak, M. (2014) Effectiveness evaluation criteria of the functioning of the national transport system and its impact on the environment. In: Simulation model to support designing a sustainable national transport system. (Eds) Jacyna, M. & Wasiak, M.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a558b9c-afae-441f-9023-44baad115123
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.