PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wpływ działania plazmy niskotemperaturowej na zmiany zwilżalności wybranych polimerów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Effect of low-temperature plasma on changes in wettability of selected polymers
Języki publikacji
PL
Abstrakty
EN
The effects of air, oxygen and argon plasma treatment on wetting and energetic properties of polymers: polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), polyoxymethylene (POM), polyamide (PA6G), polycarbonate (PC) and polypropylene (PP) were studied. The changes in surface properties of PMMA, PEEK, POM, PA6G polymers after the air plasma treatment, and PP and PC polymers after the Ar or O2 plasma treatment were determined via the measurement of advancing and receding contact angles of three liquids having different polarity, i.e. water, formamide and diiodomethane. Having the determined contact angles the surface free energy and its components of the polymers were calculated using three different theoretical approaches, namely: acid-base Lifsthitz-van der Waals (LWAB), contact angle hysteresis (CAH) and Owens and Wendt (O-W). The effects of plasma treatment were further determined by calculations of the adhesion work and work of spreading of water on modified polymer and compared to values calculated for the unmodified surfaces. Then for the PEEK and POM modified with the air plasma, their surface wettability was determined after 14 days from the exposure to the plasma. It was found that plasma treatment caused better wettability what reflected in a decreased contact angles measured on the modified polymer surfaces. The greatest changes appeared for polar liquids, i.e. water and formamide. It pointed to an increased the surface hydrophilicity after the plasma treatment. The changes correlated also with the increased polar interactions due to appearance polar groups on the surface. For the studied polymer surfaces, generally the dispersive interactions practically did not change, regardless the treatment time and plasma type. The total surface free energy values calculated for the polymers from three different approaches to interfacial interactions are similar. However, the energy values are apparent because they depend s upon the kind of liquid used for the contact angles measurement. Irrespectively of the plasma type, for all polymers an increase of the adhesion work of water in reference to the unmodified surfaces was observed. The most appropriate time to improve the adhesion between the polymer surface and liquid was found to be 25 or 60 s. However, the effects of plasma treatment are not permanent. With the storage time the contact angles have increased. This can be due to the structure reorganization within a few nm thick the surface layer.
Rocznik
Strony
1270--1295
Opis fizyczny
Bibliogr. 87 poz., wykr.
Twórcy
  • Instytut Nauk Chemicznych, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin
  • Instytut Nauk Chemicznych, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin
  • Instytut Nauk Chemicznych, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin
  • Instytut Nauk Chemicznych, Wydział Chemii, Uniwersytet Marii Curie-Skłodowskiej w Lublinie, pl. Marii Curie-Skłodowskiej 3, 20-031 Lublin
Bibliografia
  • [1] E. Proniewicz, Polimery – Open AGH e-podręczniki, https://epodreczniki.open.agh.edu.pl/openagh-download.php?name=Polimery&type=pdf (04.05.2021)
  • [2] H.R. Allcock, Introduction to Material Chemistry, John Wiley & Sons, 2008.
  • [3] https://www.green-projects.pl/zanieczyszczenie-plastikiem-globalny-problem/ (08.03.2021)
  • [4] E.M. Liston, L. Martinu, M.R. Wertheimer, J. Adhesion Sci. Technol. 1993, 7, 1091.
  • [5] C. Wang, J.R. Chen, R. Li, Appl. Surf. Sci. 2008, 254, 2882.
  • [6] K.M. Baumgartner, J. Schneider, A. Schulz, J. Feichtinger, M. Walker, Surf. Coat. Technol. 2001, 142, 501.
  • [7] B. Gupta, J. Hilborn, Ch. Hollenstein, C.J.G. Plummer, R. Houriet, N. Xanthopoulos, J. Appl. Polym. Sci. 2000, 78,1083.
  • [8] A. Vesel, M. Mozetic, Vacuum 2012, 86, 634.
  • [9] D. Rymuszka, Wpływ plazmy niskotemperaturowej na właściwości powierzchniowe wybranych ciał stałych, praca doktorska, UMCS, Lublin 2018.
  • [10] D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
  • [11] C.J. van Oss, R.J. Good, M.K. Chaudhury, J. Colloid Interface Sci. 1986, 111, 378.
  • [12] C.J. van Oss, R.J. Good, M.K. Chaudhury, Langmuir 1988, 4, 884.
  • [13] C.J. van Oss, Colloids Surf. A 1993, 78, 1.
  • [14] E. Chibowski, In: Contact Angle, Wettability and Adhesion, K.L. Mittal (Ed.), VSP, Ultrecht, 2002, 265.
  • [15] E. Chibowski, R. Perea–Carpio, Adv. Colloid Interface Sci. 2002, 98, 245.
  • [16] E. Chibowski, Adv. Colloid Interface Sci. 2003, 103, 149.
  • [17] D. Rymuszka, K. Terpiłowski, L. Hołysz, E. Chibowski, Annales UMCS, Chemia 2015, 70, 65.
  • [18] D. Rymuszka, K. Terpiłowski, P. Borowski, L. Hołysz, Polym. Int. 2016, 65, 827.
  • [19] K. Terpiłowski, D. Rymuszka, L. Hołysz, E. Chibowski, Proceedings of 8th International Conference MMT2014, Ed. M. Zinigrad, Ariel University 2014, 4, 155.
  • [20] E. Pawelec, Diagnostyka plazmy niskotemperaturowej metodami spektroskopii optycznej, Wydawnictwo Uniwersytetu Opolskiego, 2014.
  • [21] A. Piel, Plasma Physics. An Introduction to Laboratory, Space, and Fusion Plasmas. Springer International Publishing AG, 2017, 2, 29.
  • [22] I. Langmuir, Proc. Natl Acad. Sci. 1928, 14, 627.
  • [23] M.R. Wertheimer, H.R. Thomas, M.J. Perri, J.E. Klemberg-Sapieha, L. Martinu, Pure Appl. Chem. 1996, 68, 1047.
  • [24] H.D. Stryczewska, Elektryka 2011, 1(272), 41.
  • [25] J. Tyczkowski, Cienkie warstwy polimerów plazmowych. WNT, Warszawa 1990.
  • [26] J. Szałatkiewicz, Pomiary Automatyka Robotyka 2010, 3, 9.
  • [27] C.M. Chan, T.M. Ko, H. Hiraoka, Surf. Sci. Rep. 1996, 24, 1.
  • [28] C. Lee, R. Gopalakrishnan, K. Nyunt, A. Wong, R.C.E. Tan, J.W.L. Ong, Microelectron. Reliab. 1999, 39, 97.
  • [29] V. Scholtz, J. Julák, V. Kříha, J. Mosinger, Prague Medical Rep. 2007, 108, 115.
  • [30] E.F. Castro Vidaurre, C.A. Achete, F. Gallo, D. Garcia, R. Simăo, A.C. Habert, Mater. Res. 2002, 5, 37.
  • [31] Plasma Surface Technology, https://pdf.directindustry.com/pdf/diener-electronic/plasma-surface-technology/50802-679748.html (24.03.20210).
  • [32] E. Abdel-Fattah, Coatings 2019, 9, 228.
  • [33] P. K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Mater. Sci. Eng. 2002, R36, 143.
  • [34] F. Huang, Q. Wei, X. Wang, W. Xu, Polym. Test. 2006, 25, 22.
  • [35] N. Gomathi, C. Eswaraiah, S. Neogi, J. Appl. Polym. Sci. 2009, 114, 1557.
  • [36] Y. Uyama, K. Kato, Y. Ikada, Adv. Polym. Sci. 1998, 137, 1.
  • [37] C.Z. Liu, N.M.D. Brown, B.J. Meenan, Surf. Coat. Technol. 2006, 201, 2341.
  • [38] C. Z. Liu, B.J. Meenan, J. Bionic Eng. 2008, 5, 204.
  • [39] D. Hegemann, H. Brunner, C. Oehr, Nucl. Instrum. Methods B 2003, 208, 281.
  • [40] M.C. Coen, R. Lehmann, P. Groening, L. Schlapbach, Appl. Surf. Sci. 2003, 207, 276.
  • [41] R.V. Dabhade, D.S. Bodas, S.A. Gangal, Mater. Lett. 2005, 59, 2903.
  • [42] V. Jokinen, P. Suvanto, S. Fransisila, Biomicrofluids 2012, 6, 016501.
  • [43] K.Y. Law, H. Zhao, Surface Wetting: Characterization, Contact Angle, and Fundamentals, Springer International Publishing, AG Switzerland, 2016.
  • [44] K.N. Prabhu, P. Fernandes, G. Kumar, Mater. Des. 2009, 2, 297.
  • [45] X. Zhao, M.J. Blunta, J.J. Yao, Pet. Sci. Technol. Eng. 2010, 71, 169.
  • [46] A. Baldan, Int. J. Adhes. Adhes. 2012, 38, 95.
  • [47] M. Sakai, T. Yanagisawa, A. Nakajima, Y. Kameshima, K. Okada, Langmuir 2009, 25, 13.
  • [48] Y. Son, C. Kim, D.H. Yang, D.J. Ahn, Langmuir 2008, 24, 2900.
  • [49] J. Perelaer, C.E. Hendriks, A.W.M. de Laat, U.S. Schubert, Nanotechnology 2009, 20, 165303.
  • [50] P. Somasundaran, L. Zhang, J. Pet. Sci. Eng. 2006, 52, 198.
  • [51] K.N. Prabhu, P. Fernades, G. Kumar, Mater. Des. 2009, 30, 297.
  • [52] Z. Pawlak, Z.A. Figaszewski, A. Gadomski, W. Urbaniak, A. Oloyede, Tribol. Int. 2010, 43, 1719.
  • [53] Z. Pawlak, W. Urbaniak, A. Oloyede, Wear 2011, 271, 1745.
  • [54] Y. Yuan, T.R. Lee, in: Bracco Surface Science Techniques. Springer–Verlag, 2013, 1, 3.
  • [55] P.G. De Gennes, Rev. Mod. Phys. 1985, 57, 827.
  • [56] L.J.M. Schlangen, L.K. Koopal, M. Stuart, J. Lyklema, Colloids Surf. 1994, 89, 157.
  • [57] L.K. Koopal, Adv. Colloid Interface Sci. 2012, 179-182, 29.
  • [58] J. Drelich, A. Marmur, Surf. Innovations 2014, 2, 211.
  • [59] J. Drelich, E. Chibowski, Langmuir 2010, 26, 18621.
  • [60] T. Young, Phil. Trans. R. Soc. Lond. 1805, 95, 65.
  • [61] M.E.R. Shanan, Rubber World 1991, 205, 28.
  • [62] J. Ościk, Adsorpcja. PWN, Warszawa, 1979.
  • [63] A.W. Adamson, A. P. Gast, Physical Chemistry of Surfaces, 6th Edition, Wiley, New York, 1997.
  • [64] E. Chibowski, L. Hołysz, A. Szcześ, in: Adhesion in Pharmaceutical, Biomedical and Dental Fields, K. Mittal, F.M. Etzler (Eds.), New York, 2017.
  • [65] Ch. Liu, N.Y. Cui, S. Osbeck, H. Liang, Appl. Surf. Sci. 2012, 259, 840.
  • [66] J. Chai, F. Lu, B. Li, D.Y. Kwok, Langmuir 2004, 20, 10919.
  • [67] K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, C. Cardinaud, Langmuir 2009, 25, 11748.
  • [68] A. Kamińska, H. Kaczmarek, J. Kowalonek, Eur. Polym. J. 2002, 38, 1915.
  • [69] F. Rezaei, M. Abbasi-Firouzjah, B. Shokri, J. Phys. D: Appl. Phys. 2014, 47, 085401.
  • [70] D.J. Upadhyay, N-Y. Cui, C.A. Anderson, N.M.D. Brown, Polym. Degrad. Stab. 2005, 87, 33.
  • [71] N. Inagaki, S. Tasaka, T. Horiuchi, R. Suyama, J. Appl. Polym. Sci. 1998, 68, 271.
  • [72] S. Zhang, F. Awaja, N. James, D.R. McKenzie, A.J. Ruys, Polym. Adv. Technol. 2011, 22, 2496.
  • [73] K. Terpiłowski, L. Hołysz, M. Chodkowski, D.C. Guinarte, Colloids Interfaces 2021, 5, 4. https://www.mdpi.com/journal/colloids
  • [74] C. Canal, R. Molina, E. Bertran, P. Erra, J. Adhes. Sci. Technol. 2004, 18, 1077.
  • [75] S.M. Kang, S.G. Yoon, D.H. Yoon, Thin Solid Films 2008, 516, 1405.
  • [76] L. Zajickova, D.P. Subedi, V. Bursikova, K. Veltruska, Acta Phys. Slovaca 2003, 53, 489.
  • [77] L.I. Kravets, A.B. Gilman, M.Yu. Yablokov, V.M. Elinson, B. Mitu, G. Dinescu, Russ. J. Electrochem. 2013, 49, 680.
  • [78] D.J. Upadhyay, N.–Y. Cui, C.A. Anderson, N.M.D. Brown, Appl. Surf. Sci. 2004, 229, 352.
  • [79] M. Bryjak, T. Janecki, I. Gancarz, K. Smolińska, Membrany–teoria i praktyka 2009, 3, 64.
  • [80] E.A. Wakelin, A.V. Kondyurin, S.G. Wise, D.R. McKenzie, M.J. Davies, M.M.M. Bilek, Plasma Processes Polym. 2015, 12, 180.
  • [81] T. Murakami, S. Kuroda, Z. Osawa, J. Colloid Interface Sci. 1998, 202, 37.
  • [82] C.C. Dupont-Gillain, Y. Adriaensen, S. Derclaye, P.G. Rouxhet, Langmuir 2000, 16, 8194.
  • [83] M. Morra, E. Occhiello, F. Garbassi, J. Colloid Interface Sci. 1989, 132, 504.
  • [84] M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey, D. Johnson, J. Colloid Interface Sci. 1990, 137, 11.
  • [85] M.J. Owen, P.J. Smith, J. Adhes. Sci. Technol. 1994, 8, 1063.
  • [86] A. Oláh, H. Hillborg, G.J. Vancso, Appl. Surf. Sci. 2005, 239, 410.
  • [87] H. Hillborg, J.F. Ankner, U.W. Gedde, G. D. Smith, H.K. Yasuda, K. Wikström, Polymer 2000, 41, 6851.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a556046-56db-4eac-9047-4ee5c7fbc179
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.