PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ CaCl2 na sorpcję metali ciężkich w biomasie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of CaCl2 on heavy metals sorption in biomass
Języki publikacji
PL
Abstrakty
PL
Zbadano w warunkach laboratoryjnych wpływ chlorku wapnia na sorpcję wybranych kationów metali ciężkich: Cu2+, Zn2+ i Cd2+ w biomasie porostów Hypogymnia physodes, mchów Pleurozium schreberi, glonów słodkowodnych Spirogyra sp., glonów morskich Palmaria palmata oraz makrofitów Elodea canadensis L. Wykazano różne właściwości sorpcyjne biomasy, powodujące m.in. zmiany pH roztworów podczas procesu sorpcji. Wskazano na zmiany wydajności oraz preferencji sorpcyjnych pod wpływem wprowadzanych do roztworu kationów Ca2+, ale także anionów Cl‾, które przesuwają stan równowagi w kierunku tworzenia form jonowych, niebiorących udziału w procesie wymiany jonowej. Interesującym, niewyjaśnionym efektem jest brak wpływu stężenia chlorku wapnia, w zakresie od 0 do 100 mmol/dm3, na sorpcję miedzi, ale tylko w badanych glonach oraz makrofitach.
EN
The influence of calcium chloride on sorption of the selected heavy metal cations: Cu2+, Zn2+ and Cd2+ in the biomass of lichens Hypogymnia physodes, mosses Pleurozium schreberi, fresh water alga Spirogyra sp., sea alga Palmaria palmata and macrophyte Elodea Canadensis L. was tested under laboratory conditions. Various biomass sorption characteristics were determined, which cause, among others, the change of the pH of the solutions during the sorption process. Changes of efficiency and sorption preferences were identified, under the influence of Ca2+ cations and also Cl‾ anions, introduced to the solution, which shift the equilibrium towards creation of the ion forms, which do not participate in the process of ions exchange. The lack of the influence of calcium chloride concentration, within the range from 0 to 100 mmol/ dm3, on the sorption of copper is an interesting, unexplained effect, however, only in the tested alga and macrophyte.
Rocznik
Strony
169--178
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Uniwersytet Opolski, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. kard. B. Kominka 6, 45-032 Opole
autor
  • Uniwersytet Opolski, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. kard. B. Kominka 6, 45-032 Opole
  • Uniwersytet Opolski, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. kard. B. Kominka 6, 45-032 Opole
autor
  • Uniwersytet Opolski, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. kard. B. Kominka 6, 45-032 Opole
autor
  • Uniwersytet Opolski, Samodzielna Katedra Biotechnologii i Biologii Molekularnej, ul. kard. B. Kominka 6, 45-032 Opole
Bibliografia
  • [1] Monteiro C.M., Castro P.M.L., Malcata F.X., Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions, World Journal of Microbiology and Biotechnology 2009, 25, 1573-1578.
  • [2] Lee M., Yang M., Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater, Journal of Hazardous Materials 2010, 173, 589-596.
  • [3] Mehta S.K., Gaur J.P., Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris, Ecological Engineering 2001, 18, 1-13.
  • [4] Robinson B., Nick Kimb N., Marchetti M., Monid C., Schroeter L., van den Dijssel C., Milne G., Clothier B., Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand, Environmental and Experimental Botany 2006, 58, 206-215.
  • [5] Wong K.K., Lee C.K., Low K.S., Haron M.J., Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions, Chemosphere 2003, 50, 23-28.
  • [6] Farajzadeh M.A., Monji A.B., Adsorption characteristics of wheat bran towards heavy metal cations, Separation and Purification Technology 2004, 38, 197-207.
  • [7] Bhat S.V., Melo J.S., Chaugule B.B., D’Souza S.F., Biosorption characteristics of uranium(VI) from aqueous medium onto Catenella repens, a red alga, Journal of Hazardous Materials 2008, 158, 628-635.
  • [8] Rajfur M., Kłos A., Wacławek M., Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water, Bioelectrochemistry 2010, 80, 81-86.
  • [9] Hauck M., Huneck S., Lichen Substances Affect Metal Adsorption in Hypogymnia physodes, Journal of Chemical Ecology 2007, 33, 219-223.
  • [10] Balarama Krishna M.V., Arunachalam J., Murali M.S., Surendra Kumar, Manchanda V.K., Performance of immobilized moss in the removal of 137Cs and 90Sr from actual low-level radioactive waste solutions, Journal of Radioanalytical and Nuclear Chemistry 2004, 261(3), 551-557.
  • [11] Rahman M.A., Hasegawa H., Aquatic arsenic: Phytoremediation using floating macrophytes, Chemosphere 2011, 83(5), 633-646.
  • [12] Vilar V.J.P., Botelho C.M.S., Boaventura R.A.R., Influence of pH, ionic strength and temperature on lead biosorption by Gelidium and agar extraction algal waste, Process Biochemistry 2005, 40, 10, 3267-3275.
  • [13] Lodi A., Solisio C., Converti A., Del Borghi M., Cadmium, Zinc, Copper, Silver and Chromium(III) removal from wastewaters by Sphaerotilus natans, Bioprocess Engineering 1998, 19, 197-203.
  • [14] Kumar D., Singh A., Gaur J.P., Mono-component versus binary isotherm models for Cu(II) and Pb(II) sorption from binary metal solution by the green alga Pithophora oedogonia, Bioresource Technology 2008, 99, 8280-8287.
  • [15] Pavasant P., Apiratikul R., Sungkhum V., Suthiparinyanont P., Wattanachira S., Marhaba T.F., Biosorption of Cu2+, Cd2+, Pb2+ and Zn2+ using dried marine green macroalga Caulerpa lentillifera, Bioresource Technology 2006, 97, 2321-2329.
  • [16] Sari A., Tuzen M., Removal of mercury(II) from aqueous solution using moss (Drepanocladus revolvens) biomass: Equilibrium, thermodynamic and kinetic studies, Journal of Hazardous Materials 2009, 171, 500-507.
  • [17] Sari A., Mendil D., Tuzen M., Soylak M., Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies, Chemical Engineering Journal 2008, 144, 1-9.
  • [18] Martins R.J.E., Pardo R., Boaventura R.A.R., Cadmium(II) and zinc(II) adsorption by the aquatic moss Fontinalis antipyretica: effect of temperature, pH and water hardness, Water Research 2004, 38, 693-699.
  • [19] Rathinam A., Maharshi B., Janardhanan S.K., Jonnalagadda R.R., Nair B.U., Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study, Bioresource Technology 2010, 101, 1466-147.
  • [20] Kłos A., Rajfur M., Wacławek M., Wacławek W., Heavy metal sorption in the lichen cationactive layer, Bioelectrochemistry 2007, 71, 60-65.
  • [21] Albadarin A.B., Al-Muhtaseb A.H., Al-laqtah N.A., Walker G.M., Allen S.J., Ahmad M.N.M., Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts, Chemical Engineering Journal 2011, 169, 20-30.
  • [22] Niu H., Volesky B., Characteristics of anionic metal species biosorption with waste crab shells, Hydrometallurgy 2003, 71, 209-215.
  • [23] Singh A., Kumar D., Gaur J.P., Removal of Cu(II) and Pb(II) by Pithophora oedogonia: Sorption, desorption and repeated use of the biomass, Journal of Hazardous Materials 2008, 152, 1011-1019.
  • [24] Uluozlu O.D., Sari A., Tuzen M., Soylak M., Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass, Bioresource Technology 2008, 99, 2972-2980.
  • [25] Tuzen M., Sari A., Mendil D., Soylak M., Biosorptive removal of mercury(II) from aqueous solution using lichen (Xanthoparmelia conspersa) biomass: Kinetic and equilibrium studies, Journal of Hazardous Materials 2009, 169, 263-270.
  • [26] Herrero R., Lodeiro P., Rey-Castro C., Vilarino T., Sastre de Vicente M.E., Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata, Water Research 2005, 39, 3199-3210.
  • [27] Kłos A., Rajfur M., Influence of hydrogen cations on kinetics and equilibria of heavy-metal sorption by algae-sorption of copper cations by the alga Palmaria palmata (Linnaeus) Weber & Mohr (Rhodophyta), Journal of Applied Phycology 2013, 25(5), 1387-1394.
  • [28] Lim L.B.L., Priyantha N., Tennakoon D.T.B., Dahri M.K., Biosorption of cadmium(II) and copper(II) ions from aqueous solution by core of Artocarpus odoratissimus, Environmental Science and Pollution Research 2012, 19, 3250-3256.
  • [29] Kłos A., Rajfur M., Wacławek M., Wacławek W., Determination of the atmospheric precipitation pH value on the basis of the analysis of lichen cationactive layer constitution, Electrochimica Acta 2006, 51(24), 5053-5061.
  • [30] Feng D., Aldrich C., Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima, Hydrometallurgy 2004, 73, 1-10.
  • [31] Rajfur M., Kłos A., Wacławek M., Sorption of copper(II) ions in the biomass of alga Spirogyra sp., Bioelectrochemistry 2012, 87, 65-70.
  • [32] Rajfur M., Kłos A., Sorption of heavy metals in the biomass of alga Palmaria palmata, Water Science and Technology 2013, 68, 1543-1549.
  • [33] Genc-Fuhrman H., Mikkelsen P.S., Ledin A., Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: Experimental comparison of 11 different sorbents, Water Research 2007, 41, 591-602.
  • [34] Kłos A., Rajfur M., Wacławek M., Wacławek W., Ion equilibrium in lichen surrounding, Bioelectrochemistry 2005, 66, 95-103.
  • [35] Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., Comparative study of biosorption of heavy metals using different types of algae, Bioresource Technology 2007, 98, 3344-3353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a537cd3-224a-4b90-82f8-0cf694313356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.