PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Accuracy of virtual rhinomanometry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: This paper describes the results of research aimed at developing a method of otolaryngological diagnosis based on computational fluid dynamics, which has been called Virtual Rhinomanometry. Material and methods: Laboratory studies of airflows through a 3D printed model of nasal cavities based on computed tomography image analysis have been performed. The CFD results have been compared with those of an examination of airflow through nasal cavities (rhinomanometry) of a group of 25 patients. Results: The possibilities of simplifying model geometry for CFD calculations have been described, the impact of CT image segmentation on geometric model accuracy and CFD simulation errors have been analysed, and recommendations for future research have been described. Conclusions: The measurement uncertainty of the nasal cavities’ walls has a significant impact on CFD simulations. The CFD simulations better approximate RMM results of patients after anemization, as the influence of the nasal mucosa on airflow is then reduced. A minor change in the geometry of the nasal cavities (within the range of reconstruction errors by CT image segmentation) has a major impact on the results of CFD simulations.
Słowa kluczowe
Rocznik
Strony
59--72
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Cracow University of Technology, Poland
  • Faculty of Mechanical Engineering, Cracow University of Technology, Poland
  • Department of Radiology, Jagiellonian University Medical College, Poland
  • Department of Otolaryngology, Jagiellonian University Medical College, Poland
  • Department of Otolaryngology, Jagiellonian University Medical College, Poland
Bibliografia
  • 1. Pallanch J. Physiology: Rhinomanometry. In: Nasal Physiology and Pathophysiology of Nasal Disorders. Springer-Verlag Berlin Heidelberg; 2013:331-344. https://doi.org/10.1007/978-3-642-37250-6_25
  • 2. Homoth Medizin Elektronik. Rhino 4000-M. Published 2021. https://www.homoth.de/en/produkte-und-loesungen/details/?id=4&titel=rhino-4000m
  • 3. Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduction. Comput Des. 1997;29(4):255-268. https://doi.org/10.1016/S0010-4485(96)00054-1
  • 4. Chrzan R, Urbanik A, Karbowski K, Moskała M, Polak J, Pyrich M. Cranioplasty prosthesis manufacturing based on reverse engineering technology. Med Sci Monit. 2012;18(1):1-6. https://doi.org/10.12659/msm.882186
  • 5. Quadrio M, Pipolo C, Corti S, et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Oto-Rhino-Laryngology. 2014;271(9):2349-2354. https://doi.org/10.1007/s00405-013-2742-3
  • 6. Faizal WM, Ghazali NNN, Khor CY, et al. Computational fluid dynamics modelling of human upper airway: A review. Comput Methods Programs Biomed. 2020;196:105627. https://doi.org/10.1016/j.cmpb.2020.105627
  • 7. Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.111100
  • 8. Corda JV, Shenoy BS, Ahmad KA, et al. Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics. Comput Methods Programs Biomed. 2022;214:106538. https://doi.org/10.1016/j.cmpb.2021.106538
  • 9. Siu J, Inthavong K, Dong J, Shang Y, Douglas RG. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty – A computational fluid dynamics study. Clin Biomech. 2021;81:105237. https://doi.org/10.1016/j.clinbiomech.2020.105237
  • 10. Malik J, Otto BA, Zhao K. Computational Fluid Dynamics (CFD) Modeling as an Objective Analytical Tool for Nasal/Upper Airway Breathing. Curr Otorhinolaryngol Rep. 2022;10(1):116-120. https://doi.org/10.1007/s40136-021-00387-x
  • 11. Sagandykova NS, Fakhradiyev IR, Sajjala SR, et al. Patient-specific CFD simulation of aerodynamics for nasal pathology: a combined computational and experimental study. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(5):470-479. https://doi.org/10.1080/21681163.2020.1858968
  • 12. Mataraci F, Karimov U, Ozdemir IB, Yildirim D, Altindag A. CFD simulations and analyses of asymptomatic and symptomatic nasal airway obstructions. J Mech Med Biol. 2022;22(01):9-10. https://doi.org/10.1142/S0219519422500051
  • 13. Aoyagi M, Oshima M, Oishi M, et al. Computational fluid dynamic analysis of the nasal respiratory function before and after postero-superior repositioning of the maxilla. PLoS One. 2022;17(4):1-20. https://doi.org/10.1371/journal.pone.0267677
  • 14. Huang R, Nedanoski A, Fletcher DF, et al. An automated segmentation framework for nasal computational fluid dynamics analysis in computed tomography. Comput Biol Med. 2019;115:103505. https://doi.org/10.1016/j.compbiomed.2019.103505
  • 15. Leventon ME, Grimson WEL, Faugeras O. Statistical shape influence in geodesic active contours. Biomed Imaging V - Proc 5th IEEE EMBS Int Summer Sch Biomed Imaging, SSBI 2002. 2002;1:316-323. https://doi.org/10.1109/SSBI.2002.1233989
  • 16. Cootes T, Taylor C, Cooper D, Graham J. Active Shape Models-Their Training and Application. Comput Vis Image Underst. 1995;61(1):38-59. https://doi.org/10.1006/cviu.1995.1004
  • 17. Keustermans W, Huysmans T, Schmelzer B, Sijbers J, Dirckx JJ. Matlab® toolbox for semi-automatic segmentation of the human nasal cavity based on active shape modeling. Comput Biol Med. 2019;105:27-38. https://doi.org/10.1016/j.compbiomed.2018.12.008
  • 18. Cherobin GB, Voegels RL, Gebrim EMMS, Garcia GJM. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold. PLoS One. 2018;13(11). https://doi.org/10.1371/journal.pone.0207178
  • 19. Quadrio M, Pipolo C, Corti S, et al. Effects of CT resolution and radiodensity threshold on the CFD evaluation of nasal airflow. Med. Biol Eng Comput. 2016;54(2-3):411-419. https://doi.org/10.1007/s11517-015-1325-4
  • 20. Inthavong K, Chetty A, Shang Y, Tu J. Examining mesh independence for flow dynamics in the human nasal cavity. Comput Biol Med. 2018;102:40-50. https://doi.org/10.1016/j.compbiomed.2018.09.010
  • 21. Schillaci A, Quadrio M. Importance of the numerical schemes in the CFD of the human nose. J Biomech. 2022;138:111100. https://doi.org/10.1016/j.jbiomech.2022.111100
  • 22. Kim SK, Na Y, Kim JI, Chung SK. Patient specific CFD models of nasal airflow: Overview of methods and challenges. J Biomech. 2013;46(2):299-306. https://doi.org/10.1016/j.jbiomech.2012.11.022
  • 23. Tretiakow D, Tesch K, Meyer-Szary J, Markiet K, Skorek A. Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method. Eur Arch Oto-Rhino-Laryngology. 2020;1:3. https://doi.org/10.1007/s00405-020-06428-3
  • 24. Tretiakow D, Tesch K, Markiet K, Skorek A. Maxillary sinus aeration analysis using computational fluid dynamics. Sci Rep. 2022;12(1):1-12. https://doi.org/10.1038/s41598-022-14342-3
  • 25. Berger M, Giotakis AI, Pillei M, et al. Agreement between rhinomanometry and computed tomography-based computational fluid dynamics. Int J Comput Assist Radiol Surg. 2021;16(3):629-638. https://doi.org/10.1007/s11548-021-02332-1
  • 26. Garcia GJM, Hariri BM, Patel RG, Rhee JS. The relationship between nasal resistance to airflow and the airspace minimal cross-sectional area. J Biomech. 2016;49(9):1670-1678. https://doi.org/10.1016/j.jbiomech.2016.03.051
  • 27. Schmidt N, Behrbohm H, Goubergrits L, Hildebrandt T, Brüning J. Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. Int J Comput Assist Radiol Surg. 2022;17:1519-1529. https://doi.org/10.1007/s11548-022-02699-9
  • 28. Kim DW, Chung SK, Na Y. Numerical study on the air conditioning characteristics of the human nasal cavity. Comput Biol Med. 2017;86:18-30. https://doi.org/10.1016/j.compbiomed.2017.04.018
  • 29. Shamohammadi H, Mehrabi S, Sadrizadeh S, Yaghoubi M, Abouali O. 3D numerical simulation of hot airflow in the human nasal cavity and trachea. Comput Biol Med. 2022;147:105702. https://doi.org/10.1016/j.compbiomed.2022.105702
  • 30. Li Q, Wang Z, Wang C, Wang H. Characterizing the respiratory-induced mechanical stimulation at the maxillary sinus fl oor following sinus augmentation by computational fluid dynamics. Front Bioeng Biotechnol. 2022;10:885130. https://doi.org/10.3389/fbioe.2022.885130
  • 31. Ormiskangas J, Valtonen O, Harju T, Rautiainen M, Kivekäs I. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery. Respir Physiol Neurobiol. 2022;302:103917. https://doi.org/10.1016/j.resp.2022.103917
  • 32. Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomech Model Mechanobiol. 2016;15(2):447-469. https://doi.org/10.1007/s10237-015-0701-1
  • 33. Croce C, Fodil R, Durand M, et al. In Vitro Experiments and Numerical Simulations of Airflow in Realistic Nasal Airway Geometry. Ann Biomed Eng. 2006;34(6):997-1007. https://doi.org/10.1007/s10439-006-9094-8
  • 34. Xu X, Wu J, Weng W, Fu M. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol. 2020;19(5):1679-1695. https://doi.org/10.1007/s10237-020-01299-3
  • 35. Van Strien J, Shrestha K, Gabriel S, et al. Pressure distribution and flow dynamics in a nasal airway using a scale resolving simulation. Phys Fluids. 2021;33:011907. https://doi.org/10.1063/5.0036095
  • 36. ANSYS. Ansys Fluent Fluid Simulation Software Ansys Fluent Helps Make Better, Faster Decisions Through. Published 2021. https://www.ansys.com/products/fluids/ansys-fluent
  • 37. Siemens. Simcenter STAR-CCM +. Published 2021. https://www.plm.automation.siemens.com/global/en/products/simcenter/STAR-CCM.html
  • 38. Burgos MA, Sanmiguel-Rojas E, del Pino C, Sevilla-García MA, Esteban-Ortega F. New CFD tools to evaluate nasal airflow. Eur Arch Oto-Rhino-Laryngology. 2017;274(8):3121-3128. https://doi.org/10.1007/s00405-017-4611-y
  • 39. Burgos MA, Sevilla García MA, Sanmiguel Rojas E, et al. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand®, Digbody® & Noseland®) to document objective flow parameters and optimise surgical results. Acta Otorrinolaringol Esp. 2018;69(3):125-133. https://doi.org/10.1016/j.otorri.2017.05.005
  • 40. Burgos MA, Sanmiguel-Rojas E, Singh N, Esteban-Ortega F. DigBody®: A new 3D modeling tool for nasal virtual surgery. Comput Biol Med. 2018;98:118-125. https://doi.org/10.1016/j.compbiomed.2018.05.016
  • 41. slicer.org. 3D Slicer Image Computing Platform. Published online 2022. https://www.slicer.org/
  • 42. Weiner H. Fused Filament Fabrication – Simply Explained. All3DP. Published 2020. https://all3dp.com/2/fused-filament-fabrication-fff-3d-printing-simply-explained/
  • 43. Fiberlogy. TDS-EASY-ABS-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/easy-abs/
  • 44. Fiberlogy. TDS-BVOH-EN.pdf. Published 2021. https://fiberlogy.com/en/fiberlogy-filaments/bvoh/
  • 45. Interacoustics A/S. RhinoStream. Published 2010. http://www.categner.se/PDFblad/RhinoStream leaflet.pdf
  • 46. Munson BR, Young D, Okiishi T. Fundamentals of Fluid Mechanics. John Wiley & Sons, Inc.; 2018
  • 47. Karbowski K, Kopiczak B, Chrzan R, Gawlik J, Szaleniec J. Rhinomanometry vs. CFD - results of measurements and calculations. Mendeley Data, V1. Published online 2022. https://doi.org/10.17632/f4hb8dkzrc.1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a50e9ed-b60a-4ac5-8918-fda129a912d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.