PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biodegradable polyester blends containing multifunctional substances of plant origin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The research aimed to develop polyester materials based on biodegradable polymers (blends of polylactide PLA and poly(hydroxybutyrate) PHB) with additives of plant origin. Substances such as chlorophyll, β-carotene, tannic acid and comparative Magenta KeyplastTM dye have been added as stabilisers and dyes of polymer blends. Design/methodology/approach: The samples were subjected to thermooxidation and UV aging. Based on changes in mechanical properties, the ageing coefficients K of the composition were calculated. In addition, the colour change was analysed. Thermal transformations of the samples were also determined by differential scanning calorimetry in order to determine the glass transition temperature, melting and crystallisation of materials, as well as to compare the resistance to thermal oxidation of polymeric composition. Findings: Chlorophyll, β-carotene and tannic acid increased resistance to thermal oxidation of PLA/PHB blends (higher oxidation temperatures in the DSC analysis, indicating a higher resistance to thermal oxidation). Materials with chlorophyll, β-carotene and Magenta organic dye had higher ageing coefficientsand, thus, better resistance to degradation. The sample containing β-carotene showed a significant colour change under the influence of heat and UV ageing. Research limitations/implications: Concerned the short ageing time of the samples, which may have been insufficient to analyse the degradation process of polymer compositions and the effects of plant stabilising substances. In the future, the ageing time of materials can be extended, and other types of degrading factors can be used. Practical implications: Practical implications include the possibility of using PLA/PHB blends as packaging materials. Adding substances of plant origin allowed obtaining colorful, visually attractive materials, similar to the Magenta dye dedicated to using in polymers. Moreover, the additives allowed control of the degradability of the samples. Originality/value: The originality of the research was the preparation of PLA/PHB polyester blends with the addition of plant substances as multifunctional agents (stabilisers and dyes).
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
autor
  • Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
Bibliografia
  • [1] H. Kaczmarek, K. Bajer, Methods of testing the biodegradation of polymeric materials. Part I. Basic definitions and methods of assessing the biodegradation of polymers in various environments, Polimery 51/10 (2006) 716-721 (in Polish).
  • [2] M. Mucha, Polymers and ecology, Lodz University of Technology Publishing House, Lodz, 2002, 144, 258- 261 (in Polish).
  • [3] O. Martin, L. Averous, Poly (Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems, Polymer 42/14 (2001) 6209-6219. DOI: https://doi.org/10.1016/S0032-3861(01)00086-6
  • [4] R. Malinowski, P. Rytlewski, M. Żenkiewicz, Effects of electron radiation on properties of PLA, Archives of Materials Science and Engineering 49/1 (2011) 25-32.
  • [5] M. Obaidur Rahman, F. Zhu, B. Yu, Improving the Compatibility of Biodegradable Poly (Lactic Acid) Toughening with Thermoplastic Polyurethane (TPU) and Compatibilized Meltblown Nonwoven, Open Journal of Composite Materials 12 (2022) 1-15. DOI: https://doi.org/10.4236/ojcm.2022.121001
  • [6] A. Duda, Polylactide - a plastic of the 21st century?, Przemysł Chemiczny 82/8-9 (2003) 905-907 (in Polish).
  • [7] K. Janczak, A. Raszkowska-Kaczor, A. Stasiek, G. Dąbrowska, Selected modifications of polylactide (PLA) with particular emphasis on the pouring process, in: Innovations in Polish Science - an overview of current research topics in the chemical industry, Sophia, Katowice, 2016, 59-65 (in Polish).
  • [8] N.A.A.B. Taib, M.R. Rahman, D. Huda, K.K. Kuok, S.Hamdan, M.K.B. Bakri, M.R.M.B. Julaihi, A. Khan, A Review on Poly Lactic Acid (PLA) as A Biodegradable Polymer, Polymer Bulletin 80 (2023) 1179-1213. DOI: https://doi.org/10.1007/s00289-022- 04160-y
  • [9] R. Malinowski, Bioplastics as new environmentally friendly materials, Inżynieria i Ochrona Środowiska 2 (2015) 215-231 (in Polish).
  • [10] M. Adnan, A.J. Siddiqui, S.A. Ashraf, M. Snoussi, R. Badraoui, M. Alreshidi, A.M. Elasbali, W.A. Al- Soud, S.H. Alharethi, M. Sachidanandan, M. Patel, Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization, Polymers 14/19 (2022) 3982. DOI: https://doi.org/10.3390/polym14193982
  • [11] A. D’Anna, R. Arrigo, A. Frache, PLA/PHB Blends: Biocompatibilizer Effects, Polymers 11/9 (2019) 1416. DOI: https://doi.org/10.3390/polym11091416
  • [12] O. Olejnik, A. Masek, J. Zawadziłło, Processability and Mechanical Properties of Thermoplastic Polylactide/ Polyhydroxybutyrate (PLA/PHB) Bioblends, Materials 14/4 (2021) 898. DOI: https://doi.org/10.3390/ma14040898
  • [13] I. Armentano, E. Fortunati, N. Burgos, F. Dominici, F. Luzi, S. Fiori, A. Jiménez, K. Yoon, J. Ahn, S. Kang, J.M. Kenny, Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems, Express Polymer Letters 9/7 (2015) 583-596. DOI: https://doi.org/10.3144/expresspolymlett.2015.55
  • [14] M. Zhang, N.L. Thomas, Blending polylactic acid with polyhydroxybutyrate; the effect on thermal, mechanical, and biodegradation properties, Advances in Polymer Technology 30/2 (2011) 67-79. DOI: https://doi.org/10.1002/adv.20235
  • [15] J.W. Park, Y. Doi, T. Iwata, Uniaxial Drawing and Mechanical Properties of Poly[(R)-3-hydroxy-butyrate]/Poly(L-lactic acid) Blends, Biomacro-molecules 5/4 (2004) 1557-1566. DOI: https://doi.org/10.1021/bm049905l
  • [16] M.P. Arrieta, M.D. Samper, M. Aldas, J. López, On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications, Materials 10/9 (2017) 1008. DOI: https://doi.org/10.3390/ma10091008
  • [17] M. Latos-Brozio, A. Masek, The application of natural food colorants as indicator substances in intelligent biodegradable packaging materials, Food and Chemical Toxicology 135 (2020) 110975. DOI: https://doi.org/10.1016/j.fct.2019.110975
  • [18] I. Gulcin, Z. Huyut, M. Elmastas, H.Y. Aboul-Enein, Radical scavenging and antioxidant activity of tannic acid, Arabian Journal of Chemistry 3/1 (2010) 43-53. DOI: https://doi.org/10.1016/j.arabjc.2009.12.008
  • [19] O. Olejnik, A. Masek, A. Kiersnowski, Thermal Analysis of Aliphatic Polyester Blends with Natural Antioxidants, Polymers 12/1 (2020) 74. DOI: https://doi.org/10.3390/polym12010074
  • [20] P. Pan, Z, Liang, B. Zhu, T. Dong, Y. Inoue, Roles of physical aging on crystallization kinetics and induction period of poly(L-lactide), Macromolecules 41/21 (2008) 8011-8019. DOI: https://doi.org/10.1021/ma801436f
  • [21] M. Latos-Brozio, A. Masek, Environmentally Friendly Polymer Compositions with Natural Amber Acid, International Journal of Molecular Science 22/4 (2021) 1556. DOI: https://doi.org/10.3390/ijms22041556
  • [22] Keyplast™ Magenta M6B Technical Datasheet. Available from: https://polymer-additives.specialchem.com/product/p-milliken-keyplast-magenta-m6b
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a50c9cb-6429-4087-b34a-f5f153466788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.