Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We give two-sided estimates of a ground state for Schrödinger operators with confining potentials. We propose a semigroup approach, based on resolvent and the Feynman-Kac formula, which leads to a new, rather short and direct proof. Our results take the sharpest form for slowly varying, radial and increasing potentials.
Czasopismo
Rocznik
Tom
Strony
267--277
Opis fizyczny
Twórcy
autor
- Faculty of Pure and Applied Mathematics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
Bibliografia
- [1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N -Body Schrödinger Operators, Princeton Univ. Press, 1982.
- [2] S. Agmon, Bounds on exponential decay of eigenfunctions of Schrödinger operators, in: Schrödinger Operators (Como, 1984), Springer, 1985, 1-38.
- [3] M. Baraniewicz and K. Kaleta, Integral kernels of Schrödinger semigroups with nonnegative locally bounded potentials, Studia Math. 275 (2024), 147-173.
- [4] K. Bogdan, J. Dziuba´nski, and K. Szczypkowski, Sharp Gaussian estimates for heat kernels of Schrödinger operators, Integral Equations Operators 91 (2019), art. 3, 20 pp.
- [5] R. Carmona, Pointwise bounds for Schrödinger eigenstates, Comm. Math. Phys. 62 (1978), 97-106.
- [6] R. Carmona and B. Simon, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems. V. Lower bounds and path integrals, Comm. Math. Phys. 1 (1981), 59-98.
- [7] X. Chen and J. Wang, Two-sided heat kernel estimates for Schrödinger operators with unbounded potentials, Ann. Probab. 52 (2024), 1016-1047.
- [8] X. Chen and J. Wang, Sharp two-sided heat kernel estimates for Schrödinger operators with decaying potentials, arXiv:2401.09005 (2024).
- [9] S. Cho and R. Song, Fractional Laplacian with supercritical killings, Comm. Math. Phys. 406, 2025.
- [10] E. B. Davies. Heat Kernels and Spectral Theory, Cambridge Tracts Math. 92, Cambridge Univ. Press, Cambridge, 1989.
- [11] E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians, J. Funct. Anal. 59 (1984), 335-395.
- [12] M. Demuth and J. A. van Casteren, Stochastic Spectral Theory for Selfadjoint Feller Operators: A Functional Integration Approach, Birkhäuser Basel, 2000.
- [13] T. Jakubowski and K. Szczypkowski, Sharp and plain estimates for Schrödinger perturbation of Gaussian kernel, J. Anal. Math. 152 (2023), 255-282.
- [14] K. Kaleta and J. L˝orinczi, Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes, Ann. Probab. 43 (2015), 1350-1398.
- [15] K. Kaleta and R. L. Schilling, Progressive intrinsic ultracontractivity and heat kernel estimates for non-local Schrödinger operators, J. Funct. Anal. 279 (2020), 108606.
- [16] J. Małecki and G. Serafin, Dirichlet heat kernel for the Laplacian in a ball, Potential Anal. 52 (2020), 545-563.
- [17] NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.1.2 of 2021- 06-15.
- [18] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978.
- [19] R. Schilling, Brownian Motion: A Guide to Random Processes and Stochastic Calculus, De Gruyter, Berlin, 2021.
- [20] B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 447-526.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a4ebec7-69d7-4eb7-aa0a-40b9a3beffd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.