PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical Properties of Polypropylene Composites with Different Reinforced Natural Fibers – A Comparative Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Developing environmentally friendly and recyclable natural fiber-reinforced polymer composites has recently attracted researchers’ attention and interest. Herein, a comparative study was conducted to compare the mechanical properties of polypropylene (PP) composites with different natural fiber reinforcement, including palm fiber (Arenga pinnata), rice straw (Oryza sativa), coconut husk (Cocos mucifera), old world forked fern leaves (dicranopteris linearis), and snake plant (Sansevieria trifasciata). This study aimed to compare the influence of the five natural fiber materials on the tensile strength and flexural strength of PP composites. The natural fibers were chemically treated with a 5% NaOH solution for 2.5 hours. In the preparation of composites, polypropylene as the matrix is heated to 300 °C and mixed randomly with natural fibers. The test results indicate that the composite with the highest tensile strength (38% higher than the lowest) and flexural strength (102% higher than the lowest) is obtained using the PP composite with reinforced rice straw fiber. In contrast, the PP composites with palm fiber have the lowest tensile strength (72% from the highest tensile strength) and the lowest flexural strength (UFSmin) (62% from the highest flexural strength) corresponds to the PP composites with coconut fiber. This study revealed that the flexural strength of all composite samples was greater than that of pure PP.
Rocznik
Strony
311--317
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Department of Physics, Faculty of Mathematic and Natural Science, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Medan 20221, Indonesia
  • Department of Physics, Faculty of Mathematic and Natural Science, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Medan 20221, Indonesia
  • Department of Physics, Faculty of Mathematic and Natural Science, Universitas Negeri Medan, Jl. William Iskandar Ps. V, Medan 20221, Indonesia
  • Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei 10607, Taiwan
  • Department of Materials and Metallurgical Engineering, Institut Teknologi Kalimantan, Jl. Soekarno Hatta No.KM 15, Balikpapan 76127, Indonesia
Bibliografia
  • 1. Agbabiaka, O.G., Oladele, I.O., Daramola, O.O. 2015. Mechanical and water absorption properties of alkaline treated coconut (cocosnucifera) and sponge (acanthus montanus) fibers reinforced polypropylene composites. American Journal of Materials Science and Technology, 4(2), 84–92.
  • 2. Asyraf, M., Ishak, M., Syamsir, A., Nurazzi, N., Sabaruddin, F., Shazleen, S., Abd Rashid, M.Z. 2022. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. Journal of Materials Research and Technology, 17, 33–65.
  • 3. Awad, A.H., El Gamasy, R., Abd El Wahab, A., Abdellatif, M.H. 2019. Mechanical and Physical Properties of PP and HDPE. Eng. Sci, 4, 34–42.
  • 4. Bekraoui, N., El Qoubaa, Z., Chouiyakh, H., Faqir, M., Essadiqi, E. 2022. Banana Fiber Extraction and Surface Characterization of Hybrid Banana Reinforced Composite. Journal of Natural Fibers, 19(16), 12982–12995.
  • 5. Cavalcanti, D.K.K., Banea, M.D., Neto, J.S.S., Lima, R.A.A., da Silva, L.F.M., Carbas, R.J.C. 2019. Mechanical characterization of intralaminar natural fibre-reinforced hybrid composites. Composites Part B: Engineering, 175, 107149.
  • 6. Cichosz, S., Masek, A. 2020. Drying of the Natural Fibers as A Solvent-Free Way to Improve the Cellulose-Filled Polymer Composite Performance. Polymers, 12(2), 484.
  • 7. Esterhuizen, M., Kim, Y. 2021. Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment. Environmental Science and Pollution Research, 29(12), 17580–17590.
  • 8. Gassan, J., Bledzki, A. 2000. Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification–Jute polypropylene composites–Applied Composite Materials, 7, 373–385.
  • 9. Hoang, V.-T., Pham, T.-N., Yum, Y.-J. 2020. Mechanical properties of coconut trunk particle/polyester composite based on alkali treatment. Advanced Composites Letters, 29, 2633366X2093589.
  • 10. Jiang, L., Du, P., Wang, H. 2021. Seawater modification of lignocellulosic fibers: comparison of rice husk and rice straw fibers. Materials Research Express, 8(3), 035102.
  • 11. Khalid, M. Y., Al Rashid, A., Arif, Z.U., Ahmed, W., Arshad, H., Zaidi, A.A. 2021. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering, 11, 100263.
  • 12. Khan, M., Rahamathbaba, S., Mateen, M., Ravi Shankar, D., Manzoor Hussain, M. 2019. Effect of NaOH treatment on mechanical strength of banana/epoxy laminates. Polymers from Renewable Resources, 10(1–3), 19–26.
  • 13. Ma, C., Kim, T.-H., Liu, K., Ma, M.-G., Choi, S.-E., Si, C. 2021. Multifunctional lignin-based composite materials for emerging applications. Frontiers in Bioengineering and Biotechnology, 9, 708976.
  • 14. Maddah, H. 2016. Polypropylene as a Promising Plastic: A Review. American Journal of Polymer Science 6(1), 1–11.
  • 15. Marjuki. 2010. The role of rice straw as a feed for sustainable beef cattle production in East Java Province, Indonesia. Advances in Animal Biosciences, 1(2), 473–474.
  • 16. Mohd Roslim, M.H., Sapuan, S., Leman, Z., Ishak, M., Maleque, M. 2017. A review of sugar palm (Arenga pinnata): Application, fibre characterisation and composites. Multidiscipline Modeling in Materials and Structures, 13(4), 678–698.
  • 17. Nossa, I., Bohórquez, O., Pertuz, A., Sánchez Acevedo, H., González Estrada, O. 2019. Tensile mechanical properties of composite materials with continuous fiber produced by additive manufacturing. Journal of Physics: Conference Series, 1386, 012008.
  • 18. Okunlola, A., Arije, D., C.N. 2018. Rooting development of Sansevieria trifasciata (Mother-In-Law Tongue) as influenced by different propagation substrates. International Journal of Environment, Agriculture and Biotechnology, 3, 1044–1048.
  • 19. Paglicawan, M.A., Emolaga, C.S., Sudayon, J.M.B., Tria, K.B. 2021. Mechanical Properties of Abaca–Glass Fiber Composites Fabricated by Vacuum-Assisted Resin Transfer Method. Polymers, 13(16), 2719.
  • 20. Prasad, A., Rao, K., Kumar, M.A., Rao, K.M. 2006. Flexural properties of rice straw reinforced polyester composites. Indian Journal of Fibre & Texitile Research, 31, 335–338.
  • 21. Qi, Z., Wang, B., Sun, C., Yang, M., Chen, X., Zheng, D., Zhang, Y. 2022. Comparison of Properties of Poly(Lactic Acid) Composites Prepared from Different Components of Corn Straw Fiber. International Journal of Molecular Sciences, 23(12), 6746.
  • 22. Rahman, M., Das, S., Hasan, M. 2018. Mechanical properties of chemically treated banana and pineapple leaf fiber reinforced hybrid polypropylene composites. Advances in Materials and Processing Technologies, 4(4), 527–537.
  • 23. Raj, S. 2021. Influence of Prosopis Juliflora Wood Flour in Poly Lactic Acid – Developing a Novel Bio-Wood Plastic Composite. Polimeros, 30(1).
  • 24. S.S., N.K., Loganathan, P., Sivanantham, G., Devarajan, B., Vigneshkumar, N., Dinesh, V.P. 2021. A review of natural fiber composites: Extraction methods, chemical treatments and applications. Materials Today: Proceedings, 45(9), 8017–8023.
  • 25. Sherwani, S.F.K., Zainudin, E.S., Sapuan, S.M., Leman, Z., Abdan, K. 2021. Mechanical Properties of Sugar Palm (Arenga pinnata Wurmb. Merr)/Glass Fiber-Reinforced Poly(lactic acid) Hybrid Composites for Potential Use in Motorcycle Components. Polymers, 13(18), 3061.
  • 26. Shieddieque, A.D., Mardiyati, R.S., Widyanto, B. 2021. Preparation and Characterization of Sansevieria trifasciata Fiber/High-Impact Polypropylene and Sansevieria trifasciata Fiber/Vinyl Ester Biocomposites for Automotive Applications. International Journal of Technology, 12(3), 549–560.
  • 27. Tan, C.S., Chan, M.Y., Koay, S.C. 2021. Preliminary Study of the Mechanical Properties of Hybrid Fibres Reinforced Unsaturated Polyester Composites. Journal of Physical Science, 32(3), 45–59.
  • 28. Widodo, R., Robi, W., Nugroho, A., Al-Janan, D. 2020. The Effect of Orientation Fibres on Flexural and Tensile Properties of Arenga Pinnata Fibres Reinforced Polyester Composites. IOP Conference Series: Materials Science and Engineering, 807(1), 012032.
  • 29. Widyasanti, A., Napitupulu, L., Thoriq, A. 2020. Physical and mechanical properties of natural fiber from Sansevieria trifasciata and Agave sisalana. IOP Conference Series: Earth and Environmental Science, 462, 012032.
  • 30. Wu, J., Liu, W., Zeb, A., Lian, J., Sun, Y., Sun, H. 2021. Polystyrene microplastic interaction with Oryza sativa: toxicity and metabolic mechanism. Environmental Science: Nano, 8(12), 3699–3710.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a4bfca2-cda3-4044-8471-21f7bbc5a9d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.