PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of Seed Longevity for Thirty Forest, Grassland and Weed Species of the Central European Flora : Results of a Seed Burial Experiment

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We compared seed longevity of herbaceous species in three habitat types differing in stability. We hypothesized that seed longevity is the lowest for forest species (living in stable habitat), the highest for weeds, while species of xerothermic grasslands take an intermediate value. Ten species were selected from each of the three habitats with balanced representation of plant families among habitats. Seeds of the 30 species were deep buried at 65 cm depth, then replicates recovered after 1, 2, 3, 4 and 6 years, and germinated in an unheated greenhouse. Weeds expressed the highest germination rate (36.1% in average) exceeding forest (14.4%) and grassland species (10.2%) which did not differ significantly. The number of species with transient, short-term persistent and long-term persistent seed bank, respectively, was 1, 7 and 2 for grasslands; 1, 3 and 6 for forests; and 0, 1 and 9 for weeds. As expected, weeds possessed the highest seed longevity. Contrary to our assumption, low seed longevity was not the norm among forest understorey species, and seed longevity of xerothermic grassland species was not intermediate but the shortest one. Ecological background of differences between hypotheses and experimental results are discussed. First record on seed bank type is reported here for 12 species: Dianthus pontederae, Digitalis grandiflora, Ferula sadleriana, Hieracium sylvaticum, Inula ensifolia, Jurinea mollis, Lychnis coronaria, Saponaria officinalis, Scorzonera austriaca, Secale sylvestre, Stipa borysthenica, Verbascum lychnitis.
Rocznik
Strony
313--326
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
autor
  • Centre for Agricultural Research, Hungarian Academy of Sciences, P.O. Box 102, Budapest, H-1525, Hungary
autor
  • Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/c., Budapest, H-1117, Hungary
autor
  • Department of Botany, Hungarian Natural History Museum, P.O. Box 222, Budapest, H-1476, Hungary
Bibliografia
  • [1] Arroyo M. T. K., Chacon P., Cavieres L. A. 2006 — Relationship between seed bank expression, adult longevity and aridity in species of Chaetanthera (Asteraceae) in central Chile — Ann. Bot. 98: 591–600.
  • [2] Baskin C. C., Baskin J. M. 1998 — Seeds: ecology, biogeography and evolution of dormancy and germination, — Academic Press, San Diego (USA), 666 pp.
  • [3] Baskin J. M., Baskin C. C. 2004 — A classification system for seed dormancy — Seed Sci. Res. 14: 1–16.
  • [4] Beal W. J. 1899 — The vitality of seeds twenty years in the soil — Proc. of the Society for the Promotion of Agric. Sci. 16: 86–87.
  • [5] Bekker R. M., Schaminee J. H. J., Bakker J. P., Thompson K. 1998 — Seed bank characteristics of Dutch plant communities — Acta Bot. Neerl. 47: 15–26.
  • [6] Bliss L. C. 1971 — Arctic and Alpine plant life cycles — Annu. Rev. Ecol. Syst. 2: 405–438.
  • [7] Bossuyt B., Hermy M. 2001 — Influence of land use history on seed banks in European temperate forest ecosystems: a review — Ecography, 24: 225–238.
  • [8] Brown A. H. F., Oosterhuis L. 1981 — The role of buried seed in coppicewoods — Biol. Conserv. 21: 19–38.
  • [9] Brown J. S., Venable D. L. 1986 — Evolutionary ecology of seed-bank annuals in temporally varying environments — Am. Nat. 127: 31–47.
  • [10] Conn J. S., Werdin-Pfisterer N. R. 2010 — Variation in seed viability and dormancy of 17 weed species after 24. 7 years of burial: The concept of buried seed safe sites — Weed Sci. 58: 209–215.
  • [11] Csapody V. 1968 — Keimlingsbestimmungsbuch der Dicotyledonen [Seedling identification book for Dicotyledons] — Akadémiai Kiadó, Budapest, 286 pp. (in German).
  • [12] Csontos P., Tamás J. 2003 — Comparisons of soil seed bank classification systems — Seed Sci. Res. 13: 101–111.
  • [13] Czarnecka J. 2004 — Microspatial structure of the seed bank of xerothermic grassland — intracommunity differentiation — Acta Soc. Bot. Pol. 73: 155–164.
  • [14] Czarnecka J. 2008 — Spatial and temporal variability of seed bank resulting from overgrowing of xerothermic grassland — Acta Soc. Bot. Pol. 77: 157–166.
  • [15] Evette A., Bédécarrats A., Bornette G. 2009 — Environmental constraints influence clonal traits of herbaceous plant communities in an Alpine massif — Folia Geobot. 44: 95–108.
  • [16] Grubb P. J. 1988 — The uncoupling of disturbance and recruitment, two kinds of seed bank, and persistence of plant populations at the regional and local scales — Ann Zool. Fenn. 25: 23–36.
  • [17] Hendry G. A. F., Thompson K., Moss C. J., Edwards E., Thorpe P. C. 1994 — Seed persistence: a correlation between seed longevity in the soil and ortho-dihydroxyphenol concentration — Funct. Ecol. 8: 658–664.
  • [18] Hill N. M., van der Kloet S. P. 2005 — Longevity of experimentally buried seed in Vaccinium: relationship to climate, reproductive factors and natural seed banks — J. Ecol. 93: 1167–1176.
  • [19] Holzel N., Otte A. 2004 — Assessing soil seed bank persistence in flood-meadows: The search for reliable traits — J. Veg. Sci. 15: 93–100.
  • [20] Honda Y. 2008 — Ecological correlations between the persistence of the soil seed bank and several plant traits, including seed dormancy — Plant Ecol. 196: 301–309.
  • [21] Horánszky A. 1964 — Die Wälder des Szentendre- Visegráder Gebirges [Forests of the Szentendre-Visegrád Mountains] — Akadémiai Kiadó, Budapest, 288 pp. (in German).
  • [22] Jankowska-Blaszczuk M., Daws M.I. 2007 — Impact of red: far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil — Funct. Ecol. 21: 1055–1062.
  • [23] Jankowska-Błaszczuk M., Kwiatkowska A. J., Panufnik D., Tanner E. 1998 — The size and diversity of soil seed banks and the light requirements of the species in sunny and shady natural communities of the Bialowieza Primeval Forest — Plant Ecol. 136: 105–118.
  • [24] Jha P., Norsworthy J. K., Garcia J. 2014 — Depletion of an artificial seed bank of Palmer amaranth (Amaranthus palmeri) over four years of burial — Am. J. of Plant Sci. 5: 1599–1606.
  • [25] Jónsdóttir I. S., Callaghan T. V., Headley A. D. 1996 — Resource dynamics within arctic clonal plants — Ecol. Bull. 45: 53–64.
  • [26] Kemp P. R. 1989 — Seed banks and vegetation processes in deserts (In: Ecology of soil seed banks, Eds: M. A. Leck, V. T. Parker, R. L. Simpson) — Academic Press, San Diego (USA), pp. 257–281.
  • [27] Kivilaan A., Bandurski R. S. 1981 — The one hundred-year period for Dr. Beal's seed viability experiment — Am. J. Bot. 68: 1290–1292.
  • [28] Kjaer A. 1940 — Germination of buried and dry stored seeds. I. 1934–1939 — Proc. of the Internat. Seed Testing Assoc. 12: 167–190.
  • [29] Kwiatkowska-Falińska A. J., Panufnik-Mędrzycka D., Wódkiewicz M., Sondej I., Jaroszewicz B. 2011 — The effects of different types of woodstand disturbance on the persistence of soil seed banks — Acta Soc. Bot. Pol. 80: 149–157.
  • [30] Kwiatkowska-Falińska A. J., Panufnik-Mędrzycka D., Wódkiewicz M., Sondej I., Jaroszewicz B. 2013 — Ancient forest species and the diversity of vegetation and seed bank indicate the aptitude of transformed thermophilous oak wood patches for restoration — Pol. J. Ecol. 61: 65–78.
  • [31] Kwiatkowska-Falińska A., Jankowska-Blaszczuk M., Jaroszewicz B. 2014 — Post-fire changes of soil seed banks in the early successional stage of pine forests — Pol. J. Ecol. 62: 455–466.
  • [32] Leck M. A., Simpson R. L. 1995 — Ten-year seed bank and vegetation dynamics of a tidal freshwater marsh — Am. J. Bot. 82: 1547–1557.
  • [33] Leck M. A., Parker V. T., Simpson R. L. (eds.) 1989 — Ecology of soil seed banks — Academic Press, San Diego (USA), 462 pp.
  • [34] Leckie S., Vellend M., Bell G., Waterway M. J., Lechowicz M. J. 2000 — The seed bank in an old-growth, temperate deciduous forest — Can. J. Botany, 78: 181–192.
  • [35] Lendvay B., Kalapos T. 2012 — Population dynamics of the climate-sensitive endangered perennial Ferula sadleriana Ledeb. (Apiaceae) — Plant Spec. Biol. 29: 138–151.
  • [36] Li X., Liu W., Tang C. Q. 2010 — The role of the soil seed and seedling bank in the regeneration of diverse plant communities in the subtropical Ailao Mountains, Southwest China — Ecol. Res. 25: 1171–1182.
  • [37] Meers T. L., Enright N. J., Bell T. L., Kasel S. 2012 — Deforestation strongly affects soil seed banks in eucalypt forests: Generalisations in functional traits and implications for restoration — Forest Ecol. Manag. 266: 94–107.
  • [38] Middleton B. A. 2003 — Soil seed banks and the potential restoration of forested wetlands after farming — J. Appl. Ecol. 40: 1025–1034.
  • [39] Molnár Zs., Biró M., Bölöni J., Horváth F. 2008 — Distribution of the (semi-)natural habitats in Hungary I. Marshes and grasslands — Acta Bot. Hung. 50 (Suppl.): 59–105.
  • [40] Muller F. M. 1978 — Seedlings of the Norhwestern European lowland — Dr. W. Junk Publishers, The Hague, The Netherlands, 654 pp.
  • [41] Nakagoshi N. 1984 — Buried viable seed populations in forest communities on the Hiba Mountains, Southwestern Japan Journal of Science of the Hiroshima University, Series B, Div. 2 (Botany) 19: 1–56.
  • [42] Osem Y., Perevolotsky A., Kigel J. 2006 — Size traits and site conditions determine changes in seed bank structure caused by grazing exclusion in semiarid annual plant communities — Ecography, 29: 11–20.
  • [43] Ozinga W. A., Hennekens S. M., Schaminee J. H. J., Smits N. A. C., Bekker R. M., Romermann C., Klimes L., Bakker J. P., van Groenendael J. M. 2007 — Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints J. Veg. Sci. 18: 489–497.
  • [44] Pake C. E., Venable D. L. 1996 — Seed banks in desert annuals: Implications for persistence and coexistence in variable environments — Ecology, 77: 1427–1435.
  • [45] Reubens B., Heyn M., Gebrehiwot K., Hermy M., Muys B. 2007 — Persistent soil seed banks for natural rehabilitation of dry tropical forests in Northern Ethiopia — Tropicultura, 25: 204–214.
  • [46] Roberts H. A. 1986 — Seed persistence in soil and seasonal emergence in plant species from different habitats — J. Appl. Ecol. 23: 639–656.
  • [47] Roberts H. A., Chancellor R. J. 1979 — Periodicity of seedling emergence and achene survival in some species of Carduus, Cirsium and Onopordum — J. Appl. Ecol. 16: 641–647.
  • [48] Roberts H. A., Neilson J. E. 1980 — Seed survival and periodicity of seedling emergence in some species of Atriplex, Chenopodium, Polygonum and Rumex — Ann. Appl. Biol. 94: 111–120.
  • [49] Rudas T. 1986 — A Monte Carlo comparison of the small sample behaviour of the Pearson, the likelihood ratio and the Cressie-Read statistics — J. Stat. Comput. Simul. 24: 107–120.
  • [50] Shumway S. W., Bertness M. D. 1992 — Salt stress limitation of seedling recruitment in a salt-marsh plant community — Oecologia, 92: 490–497.
  • [51] StatSoft 2008 — StatSoft, Inc. 2008. STATISTICA (data analysis software system), version 8.0. — www.statsoft.com.
  • [52] Strykstra R. J., Bekker R. M., Van Andel J. 2002 — Dispersal and life span spectra in plant communities: a key to safe site dynamics, species coexistence and conservation — Ecography, 25: 145–160.
  • [53] Telewski F. W., Zeevaart J. A. D. 2002 — The 120-yr period for Dr. Beal's seed viability experiment — Am. J. Bot. 89: 1285–1288.
  • [54] Thompson K. 1993 — Seed persistence in soil (In: Methods in comparative plant ecology, Eds: G. A. F. Hendry, J. P. Grime) — Chapman and Hall, London, pp. 199–202.
  • [55] Thompson K., Grime J. P. 1979 — Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats — J. Ecol. 67: 893–921.
  • [56] Thompson K., Band S. R., Hodgson J. G. 1993 — Seed size and shape predict persistence in soil — Funct. Ecol. 7: 236–241.
  • [57] Thompson K., Bakker J. P., Bekker R. M. 1997 — The soil seed banks of North West Europe: methodology, density and longevity — Cambridge Univ. Press, Cambridge, 276 pp.
  • [58] Thompson K., Bakker J. P., Bekker R. M., Hodgson J. G. 1998 — Ecological correlates of seed persistence in soil in the north-west European flora — J. Ecol. 86: 163–169.
  • [59] Toole E. H., Brown E. 1946 — Final results of the Duvel buried seed experiment — J. Agric. Res. 72: 201–210.
  • [60] Virágh K., Gerencsér L. 1988 — Seed bank in the soil and its role during secondary successions induced by some herbicides in a perennial grassland community — Acta Bot. Hung. 34: 77–121.
  • [61] Wódkiewicz K., Kwiatkowska-Falińska A. 2010 — Small scale spatial pattern of a soil seed bank in an old-growth deciduous forest — Pol. J. Ecol. 58: 487–500.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a4a1baf-8e67-4894-9d8b-e927b290fa52
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.