PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of ABS samples manufactured under different process conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this study is to determine the effect of manufacturing conditions on the mechanical properties and structure of ABS parts. Two sets of samples with the same geometric characteristics were produced by fused deposition modelling (FDM) and injection molding (IM). The molding pressure and cooling rate were found to have a significant effect on shaping the mechanical properties and structure of ABS products. The manufacturing method and adopted process parameters have a significant impact on the degree of packing of macromolecules in the volume of the product and thus determine its density. Selected mechanical properties were determined and compared with their specific gravity. The research was carried out using tools and machines, i.e. injection molds of unique design and standard measuring stations. Tensile and bending strengths and Young’s modulus were related to the density of products obtained under different process conditions and having gradient and solid structures. The results provide useful information for engineers designing products using FDM technology. Relating tensile and flexural strength and Young’s modulus to the specific gravity of the product. It was found that the value of product properties is closely related to various process conditions, which further provides a true description of the products.
Rocznik
Strony
art. no. e147065
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • [1] L. Prabhu, K. Sangeetha, J. Jackson, K.G.Jerish, and P. Naveen, “Development of advanced 3D printing technology in automotive industry,” AIP Conf. Proc. vol. 2523, 2023, p. 020101, doi: 10.1063/5.0110513.
  • [2] S. Dhakal, “The Roles and Applications of Additive Manufacturing Technology in the Aerospace Industry,” Int. J. Sci. Res. Multidiscip. Stud., vol. 9, no. 3, pp.42-49, Mar. 2023.
  • [3] E. Liciu, M.M. Mihai, A. Gabara, and S. Ionescu, “The evolution of 3d printing in surgical field,” Technology and Innovation in Life Sciences, vol. 1, no. 1, pp. 36-41, 2022, doi: 10.56051/tils.v1i1.3.
  • [4] M. Macko et al. “Design and manufacture of artificial organs made of polymers,” XXIII Polish-Slovak Scientific Conference on Machine Modelling and Simulations (MMS 2018), MATEC Web of Conferences, 2018, vol.254, p. 06006.
  • [5] K. Koshechkin, O. Lebed, and Y. Levushkina, “The possibilities of using 3D printing in pharmaceutical industry,” Pharm. Bus. Drug Technol., vol. 3, 2023, doi: 10.33920/med-13-2303-02.
  • [6] H. Asad, K. Ihsanullah, and M. Javaid, “Applications and Prospects of 3D Printing in the Packaging Industry,” Int.l J. Adv. Eng. Res. Sci., vol. 10, no. 1, pp. 55-61, 2023, doi: 10.22161/ijaers.101.9.
  • [7] P. Srivastava and P. Sahlot, “Additive Manufacturing in Industry 4.0: A Review,” in: A. Maurya, A.K. Srivastava, P.K. Jha, S.M. Pandey, Eds., Recent Trends in Mechanical Engineering. Lecture Notes in Mechanical Engineering. doi: 10.1007/978-981-19-7709-1_29.
  • [8] “A Comprehensive Introduction to 3D Printing Technology,” 3dprintingforbeginners. [Online] Available at: http://3dprintingforbeginners.com/3d-printing-technology (accessed 06 Ferbruary 2023).
  • [9] D. Feeney, “FFF vs. SLA vs. SLS: 3D Printing.” [Online] Available at: http://www.sd3d.com/fff-vs-sla-vs-sls (accessed 27 Ferbruary 2023).
  • [10] “The A-Z 3D Printing Handbook,” SD3D team. [Online] Available at: http://www.sd3d.com/handbook (accessed 15 December 2022).
  • [11] A. Stern, Rosentha,Y., D. Richkov, O. Gewelber, and D. Ashkenazi, “Mechanical performance, structure and fractography of abs manufactured by the fused filament fabrication additive manufacturing,” Annals of “Dunarea de Jos” University of Galati. Fascicle XII, Welding Equipment and Technology, vol 33, pp. 5–26, 2022.
  • [12] M.S.A. Parast, et al. “Bending fatigue behavior of fused filament fabrication 3D-printed ABS and PLA joints with rotary friction welding,” Prog. Addit. Manuf., vol. 7, pp. 1345–1361, 2022, doi: 10.1007/s40964-022-00307-5
  • [13] K. Ninikas, J. Kechagias, N.A. Fountas, and N.M. Vaxevanidis, “A study of Fused Filament Fabrication process efficiency: ABS vs PLA materials,” IOP Conf. Ser.-Mater. Sci. Eng., vol. 1235, p. 012007, 2022, doi: 10.1088/1757-899X/1235/1/012007.
  • [14] A. Alafaghani, A. Muhamma, A. Hossein, and A. Qattawi, “Modeling the influence of fused filament fabrication processing parameters on the mechanical properties of ABS parts,” J. Manuf. Process., vol. 71, pp. 711–723, 2021, doi: 10.1016/j.jmapro.2021.09.057
  • [15] S. Dev, R. Srivastava, (2023), Influence of process variables on mechanical properties and material weight of acrylic butadiene styrene parts produced by fused filament fabrication, (2023), Progress in Additive Manufacturing, 8, 143–158 (2023). doi: 10.1007/s40964-022-00318-2
  • [16] Yankin, A.; Alipov, Y.; Temirgali, A.; Serik, G.; Danenova, S.; Talamona, D.; Perveen, A. (2023), Optimization of Printing Parameters to Enhance Tensile Properties of ABS and Nylon Produced by Fused Filament Fabrication. Polymers 2023, 15, 3043. doi: 10.3390/polym15143043
  • [17] K. Pepliński, Czyżewski, P., D. Górecki, D. Sykutera, Bieliński, M. (2017), Wybrane cechy geometryczne i wskaźniki wytrzymałościowe elementów wykonanych metodą modelowania uplastycznionym tworzywem. Polimery, Vol. 66, Iss. 3, pp. 154-163.
  • [18] Anubhav, R. Kumar, S.K. Nandi, Agrawal, A. (2023). Influence of Build Orientation on Tensile and Flexural Strength of FDM Fabricated ABS Component. In: Ramesh N. Babu, S. Kumar, P.R. Thyla, Sripriyan, K. (eds) Advances in Additive Manufacturing and Metal Joining. Lecture Notes in Mechanical Engineering. Springer, Singapore. doi: 10.1007/978-981-19-7612-4_15
  • [19] W. Kiński, P. Pietkiewicz, Influence of the Printing Nozzle Diameter on Tensile Strength of Produced 3D Models in FDM Technology. (2020) Agricultural Engineering, vol.24, no.3, 3920, pp.31-38. doi: 10.1515/agriceng-2020-0024
  • [20] Czyżewski, P.; Marciniak, D.; Nowinka, B.; Borowiak, M.; M. Bieliński,(2022), Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers 2022, 14, 356. doi: 10.3390/polym14020356
  • [21] D. Marciniak, P. Szewczykowski, Czyżewski, P., D. Sykutera, M. Bieliński, (2018), "Effect of surface modification by acetone vaporization on the structure of 3D printed acrylonitrile-butadiene-styrene elements", Polimery, Vol.63, no. 11-12, pp. 785-790.
  • [22] Czyżewski, P., M. Falkiewicz, S. Siutkowski, "Badanie technologiczności drukowania obiektów przestrzennych w technologii FDM (Fused Deposition Modelling), 18 Nationwide Conference: Recirculation Vol. 19 Iss: 2, pp.118 - 125 in Machine Construction, 20-21 May 2014, Bydgoszcz, Poland.
  • [23] V. Mishra, C.K. Ror, S. Negi, S. Kar, L.N. Borah, Development of sustainable 3D printing filaments using recycled/virgin ABS blends: Processing and characterization, (2023), Polymer Engineering and Science, 63(7), 1890. doi: 10.1002/pen.26330
  • [24] V. Mishra, Negi, S. & Kar, S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. Journal of Material Cycles and Waste Management, 25, 758–784 (2023). doi: 10.1007/s10163-022-01588-2
  • [25] Mishra,V., Negi,S., S. Kar, (2023), FDM‑based additive manufacturing of recycled thermoplastics and associated composites, Journal of Material Cycles and Waste Management (2023) 25:758–784, doi: 10.1007/s10163-022-01588-2
  • [26] Czyżewski, P., Bieliński, D. Sykutera, M. Jurek, Gronowski, Ł. Ryl, H. Hoppe, (2018) "Secondary use of ABS co-polymer recyclates for the manufacture of structural elements using the FFF technology", Rapid Prototyping Journal, Vol. 24, Iss. 9, pp. 1447-1454.
  • [27] Refil, "Recycled ABS filament from car dashboards", available at: http://www.re-filament.com/shop/filament/recycled-abs-filament.html", (accessed 06 February 2023).
  • [28] D. Marciniak, Czyżewski, P., D. Sykutera, M. Bieliński, (2019) “Recycling of ABS operating elements obtained from industry 3D printing machines”, Polimery, Vol.64, no. 11-12, pp.803 - 810
  • [29] Maidin,S., Hayati.,N., RajendranT.,K., Muhammad,A.,M, (2023),Comparative analysis of acrylonitrile butadiene styrene and polylactic acid samples’ mechanical properties printed in vacuum, Additive Manufacturing, Volume 67, 2023, 103485,doi: 10.1016/j.addma.2023.103485.
  • [30] D. Sykutera, Czyżewski, P., A. Kościuszko, P. Szewczykowski, L. Wajer, M. Bieliński, (2018), Monitoring of the injection and holding phases by using a modular injection mold", Journal of Polymer Engineering, Vol.38, Iss. 1, pp. 63-71.
  • [31] H. Askanian, Muranaka De D. Lima, S. Commereuc, V. Verney, (2018), "Toward a Better Understanding of the Fused Deposition Modeling Process: Comparison with Injection Molding", 3D Printing and Additive Manufacturing, Vol. 5, Iss. 4, pp. 319-327.
  • [32] L. Behalek, J. Safka, M. Seidl, J. Habr, J. Bobek, "Fused deposition modelling vs. Injection molding: Influence of fiber orientation and layer thickness on the mechanical properties", (2018), MM Science Journal, Iss. December, pp. 2722-2726.
  • [33] D. Marciniak, N. Echaust, M. Roch, (2018), "Ecological aspects of the use of recycled materiałs in the additive manufacturing technologies", Ekologia i technika Vol.149, Iss. 2, pp.12-18.
  • [34] Rodríguez-Reyna, S.L., C. Mata, Díaz-Aguilera,J.H., Acevedo-Parra,H.R., F. Tapia, (2022), Mechanical properties optimization for PLA, ABS and Nylon + CF manufactured by 3D FDM printing, Materials Today Communications, Volume 33, 2022, 104774,doi: 10.1016/j.mtcomm.2022.104774.
  • [35] Czyżewski, P.; Marciniak, D.; Nowinka, B.; Borowiak, M.; Bieliński, M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers 2022, 14, 356. doi: 10.3390/polym14020356.
  • [36] Tian,X., Todoroki,A., Liu,T., Wu,L., Hou,Z., Ueda,M., Hirano,Y., Matsuzaki,R., Mizukami,K., Iizuka,K.,Malakhov,A.V., Polilov,A.N., Li,D., Lu,B.,(2022), 3D Printing of Continuous Fiber Reinforced Polymer Composites: Development, Application, and Prospective,Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers,Volume 1, Issue 1, 2022, 100016, doi: 10.1016/j.cjmeam.2022.100016
  • [37] P.P. Szewczykowski, Skarżyński, Ł., (2019), "Application of the X-ray micro-computed tomography to the analysis of the structure of polymeric materials", Polimery/Polymers, Vol. 64, Iss. 1, pp. 12-22.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a3d3df2-a3f4-47f3-b91d-71108a64f24d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.