PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Clasts derived from rhizocretions in shallow-marine Miocene clastic deposits of northern Hungary: an example of zombie structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Disc- and cylindrical-shaped clasts of fine-grained calcareous and ferruginous rock, each with a central tunnel, occur in shallow marine brackish Miocene sandy deposits of the Egyházasgerge Formation in Hungary. Previously, these have been interpreted as enigmatic biogenic (?) structures. After field and laboratory examination and comparisons with sub-recent rhizoclasts in subsoils developed on Quaternary fine-grained deposits in SE Poland, they are re-interpreted as redeposited rhizocretions possibly washed out of the coeval continental deposits of the Salgótarján Lignite Formation. Most are fragmented and abraded. They are termed rhizoclasts and are presented as an example of zombie structures inherited from another environment where they played a different role. Such rhizoclasts can be considered as an indicator of the source of the clastic material transported from a vegetated landmass on which moderate or poorly drained soils develop and plant roots penetrate the fine-grained substrate. In such soils, iron was mobilized, then fixed by oxidation, as the water table and oxygen levels fluctuated.
Rocznik
Strony
art. no. 4
Opis fizyczny
Bibliogr. 54 poz., fot., map., rys., tab., wykr.
Twórcy
  • Jagiellonian University, Faculty of Geography and Geology, Institute of Geological Sciences, Gronostajowa 3a, 30-387 Kraków, Poland
  • University of Debrecen, Department of Mineralogy and Geology, H-4032 Egyetem tér 1., Debrecen, Hungary
  • Mátra Museum of the Hungarian Natural History Museum, H-3200, Gyöngyös, Kossuth u. 40, Hungary
Bibliografia
  • 1. Alekseeva, T.V., 2020. Rhizoliths in Devonian and Early Carboniferous palaeosols and their paleoecological interpretation. Eurasian Soil Science, 53: 405-419. doi: 10.1134/S106422932004002X
  • 2. Alhonen, P., Koljonen, T., Lahermo, P., Uusinoka, R., 1975. Ferruginous concretions around root channels in clay and fine sand deposits. Bulletin of the Geological Society of Finland, 47: 175-181. doi: 10.17741/bgsf/47.1-2.020
  • 3. Archibald, J.D., 1996. Dinosaur Extinction and the End of an Era. Columbia University Press.
  • 4. Barta, G., 2011. Secondary carbonates in loess-paleosoil sequences: a general review. Open Geosciences, 3: 129-146. doi: 10.2478/s13533-011-0013-7
  • 5. Becze-Deák, J., Langohr, R. Verrecchia, E., 1997. Small scale secondary CaCO3 accumulations in selected sections of the European loess belt: morphological forms and potential for paleoenvironmental reconstruction. Geoderma, 76: 221-252. doi.org/10.1016/S0016-7061(96)00106-1
  • 6. Biernacka, J., Issmer, K., 1996. Micromorphological analysis of loess deposits from Klępicz, Western Pomerania (in Polish with English summary). Przegląd Geologiczny, 44: 43-48.
  • 7. Bojanowski, M.J., Jaroszewicz, E., Košir, A., Łoziński, M., Marynowski, L., Wysocka, A., Derkowski, A., 2016. Root-related rhodochrosite and concretionary siderite formation in oxygen-deficient conditions induced by a ground-water table rise. Sedimentology, 63: 523-551. doi: 10.1111/sed.12227
  • 8. Bojanowski, M.J., Goryl, M., Kremer, B., Marciniak-Maliszewska, B., Marynowski, L., Środoń, J., 2020. Pedogenic siderites fossilizing Ediacaran soil microorganisms on the Baltica paleocontinent. Geology, 48: 62-66. doi: 10.1130/g46746.1
  • 9. Canti, M., 1998. Origin of calcium carbonate granules found in buried soils and Quaternary deposits. Boreas, 27: 275-288. doi.org/10.1111/j.1502-3885.1998.tb01421.x
  • 10. Canti, M.G., Piearce, T.G., 2003. Morphology and dynamics of calcium carbonate granules produced by different earthworm species. Pedobiologia, 47: 511-521. doi.org/10.1078/0031-4056-00221
  • 11. Chesworth, W. (ed.), 2008. Encyclopedia of Soil Science. Springer, Dordrecht.
  • 12. Csontos, L., Vörös, A., 2004. Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210: 1-56. doi.org/10.1016/j.palaeo.2004.02.033
  • 13. Dávid, Á., Püspöki, Z., Kónya, P., Vincze, L., Kozák, M., McIntosh, R.W., 2006. Sedimentology, paleoichnology and sequence stratigraphy of a Karpatian sandy facies (Salgótarján Lignite Formation, N Hungary). Geologica Carpathica, 57: 279-94.
  • 14. Dávid, Á., Kovács, B., Fodor, R., 2008. Bioerosion in the shells of Early Miocene Balanidae (Bükk Mountains, Hungary). In: Abstracts of the 6th. International Bioerosion Workshop Salt Lake City (UT), USA, July13-20th. Salt Lake City.
  • 15. Dávid, Á., Uchman, A., Fodor, R., 2015. Dactyloidites peniculus from the Early Miocene of Hungary. In: SLIC 2015, Third Latin American Symposium on Ichnology, Abstracts and Intra-Symposium Fieldtrip Guide (eds. M. Verde and G. Roland): 38. Colonia del Sacramento, Uruguay.
  • 16. Durand, N., Monger, H.C., Canti, M.G., 2010. Calcium carbonate features. In: Interpretation of Micromorphological Features of Soils and Regoliths (eds. G. Stoops, V. Marcelino and F. Mees): 149-193. Elsevier B.V.
  • 17. Gocke, M., Wiesenberg, G.L.B., Löscher, M., Pustovoytov, K., Kuzyakov, Y., 2009. Rhizoliths in loess - determination of the origin using organic geochemical approaches. EGU General Assembly 2009, held 19-24 April, 2009 in Vienna, Austria: 7861. http://meetings.copernicus.org/egu2009
  • 18. Gocke, M., Kuzyakov, Y., Wiesenberg, G.L.B., 2010. Rhizoliths in loess - evidence for post-sedimentary incorporation of root-derived organic matter in terrestrial sediments as assessed from molecular proxies. Organic Geochemistry, 41: 1198-1206. doi.org/10.1016/j.orggeochem.2010.08.001
  • 19. Gocke, M., Pustovoytov, K., Kühn, K.P., Wiesenberg, G.L.B., Löscher, M., Kuzyakov, Y., 2011. Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition: d13C, 14C. Chemical Geology, 283: 251-260. doi.org/10.1016/j.chemgeo.2011.01.022
  • 20. Gyalog, L. ed., 1996. A földtani térképek jelkulcsa és a rétegtani egységek rövid leírása (in Hungarian). Geological Institute of Hungary, Budapest.
  • 21. Hámor, G., 2001. Miocene palaeogeography of the Karpathian Basin: interpretation for the Miocene palaeogeographic and facies maps of the Karpathian Basin (in Hungarian). Geological Institute of Hungary, Budapest.
  • 22. Hofmann, B.A., 1999. Geochemistry of natural redox fronts - a review. Technical Repepoert Nagra 99-05. National Cooperative for the Disposal of Radioactive Waste, Wettingen: 142.
  • 23. Klappa, C.F., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology, 27: 613-629. doi.org/10.1111/j.1365-3091 .1980.tb01651 .x
  • 24. Kovač, M., Hudáčková, N., Halásová, E., Kovacova, M., Holcová, K., Oszczypko-Clowes, M., Báldi, K., Less, G., Nagymarosy, A., Ruman, R., Klučiar, T., Jamrich, M., 2017. The Central Paratethys palaeoceanography: a water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geologica Slovaca, 9: 75-114.
  • 25. Łącka, B., Łanczont, M., Komar, M., Madeyska, T., 2008. Stable isotope composition of carbonates in loess at the Carpathian margin (SE Poland). Studia Quaternaria, 25: 3-21.
  • 26. Łącka, B., Łanczont, M., Madeyska, T., 2009. Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences from the Carpathian margin and Podolia, as a palaeoclimatic record. Quaternary International, 198: 136-151. doi.org/10.1016/j.quaint.2008.02.001
  • 27. Lane, A., Janis, CM., Sepkoski, J.J, Jr., 2005. Estimating paleodiversities: a test of the taxic and phylogenetic methods. Paleobiology, 31: 21-34.
  • 28. Laskowska-Wysoczańska, W., 1971. Quaternary stratigraphy and palaeogeomorphology of the Sandomierz Lowland and the Foreland of the Middle Carpathians, Poland (in Polish with English summary). Studia Geologica Polonica, 34: 1-109.
  • 29. Laskowska-Wysoczańska, W., 1995. Neotectonic and glacial control on geomorphic development of middle and eastern parts of the Sandomierz Basin and the Carpathian margin. Folia Quaternaria, 66: 105-122.
  • 30. Lee, M.R., Hodson, M.E., Langworthy, G., 2008. Earthworms produced granules of intricately zoned calcite. Geology, 36: 943-946. doi: 10.1130/G25106A.1
  • 31. Less, G., Kovács, S., Pelikán P. (Ed.), Pentelényi, L., Sásdi, L., 2005. Geology of the Bükk Mountains. Explanatory Book to the Geological Map of the Bükk Mountains (1:50 000). Magyar Állami Földtani Intézet kiadványa, Budapest.
  • 32. Löwemark, L., Zheng, Y.C., Das, S., Yeh, C.P., Chen, T.T., 2016. A peculiar reworking of Ophiomorpha shafts in the Miocene Nangang Formation, Taiwan. Geodinamica Acta, 28: 71-85. doi: 10.1080/09853111.2015.1035208
  • 33. Ludvigson, G.A., González, L.A., Fowle, D.A., Roberts, J.A., Driese, S.G., Villarreal, M.A., Smith, J.J., Suarez, M.B., 2013. Paleoclimatic applications and modern process studies of pedogenic siderite. SEPM Special Publication, 44: 79-87. doi:10.2110/sepmsp.104.01
  • 34. Metodiev, L., Petrova, S., Dochev, D., Dimova, L., 2022. Interfluve waterlogged palaeosols preserved within offshore shales? Preliminary data from the Aalenian of West Bulgaria. In: XXII International Congress of the CBGA, Plovdiv, Bulgaria, 7-11 September 2022, Abstracts (eds. I. Peycheva, A. Lazarova, G. Granchovski, R. Ivanova, I. Lakova and L. Metodiev): 52. Geologica Balcanica, Plovdiv.
  • 35. Nagy, E., 1990. Climatic changes in the Hungarian Miocene. Review of Palaeobotany and Palynology, 65: 71-74. doi.org/10.1016/0034-6667(90)90057-P
  • 36. Nagy, E., 1992. A comprehensive study of Neogene sporomorphs in Hungary (in Hungarian with English summary). Geologica Hungarica, Series Palaeontologica, 53: 1-379.
  • 37. Nanzyo, M., Kanno, H., 2018. Inorganic Constituents in Soil: Basics and Visuals. Springer Open, Singapore. doi: 10.1007/978-981-13-1214-4
  • 38. Netto, R.G., Buatois, L.A., Mángano, M., Balistieri, P., 2007. Gyrolithes as a multipurpose burrow: an ethological approach. Revista Brasileira de Paleontologia, 10: 157-168. doi: 10.4072/rbp.2007.3.03
  • 39. Owen, R.A., Owen, R.B., Renaut, R.W., Scott, J.J., Jones, B., Ashley, G.M., 2008. Mineralogy and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift Valley. Sedimentary Geology, 203: 143-163. doi.org/10.1016/j.sedgeo.2007.11.007
  • 40. Pedrol de Freitas, G., Francischini, H., Tapajós de Souza Tâmega, F., Spotorno-Oliveira, P., Dentzien-Dias, P., 2020. On ex situ Ophiomorpha and other burrow fragments from the Rio Grande do Sul Coastal Plain, Brazil: paleobiological and taphonomic remarks. Journal of Paleontology, 94: 1148-1164. doi: 10.1017/jpa.2020.29
  • 41. Pemberton, G.S., Spila, M., Pulham, A.J., Saunders, T., MacEachern, J.A., Robbins, D., Sinclair, I.K., 2001. Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne D'Arc Basin. Geological Association of Canada, Short Course Notes, 15.
  • 42. Püspöki, Z., 2002. A Tardonai-dombság miocén medencefejlődése az üledėkes szekvenciák fácies- és rétegtani adatainak tükrében (in Hungarian). Ph.D. Thesis, University of Debrecen.
  • 43. Püspöki, Z., Hámor-Vidó, M., Pummer, T., Sári, K., Lendvay, P., Selmeczi, I., Detzky, G., Gúthy, T., Kiss, J., Kovács, Z., Prakfalvi, P., McIntosh, R.W., Buday-Bódi, E., Báldi, K., Markos, G., 2017. A sequence stratigraphic investigation of a Miocene formation supported by coal seam quality parameters - Central Paratethys, N-Hungary. International Journal of Coal Geology, 179: 196-210. doi: 10.1016/j.coal.2017.05.016
  • 44. Radócz, G., 1977. Paleoichnological data from the beach sands of the Helvetian sequence at Bélapátfalva, NE Hungary (in Hungarian with English summary). A Magyar Állami Földtani Intézet Évi Jelentése, 1975: 83-95.
  • 45. Renaut, R.W., 1993. Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. Sedimentology, 40: 271-301. doi.org/10.1111/j.1365-3091.1993.tb01764.x
  • 46. Retallack, G.J., Catt, J.A., Chaloner, W.G., 1985. Fossil soils as grounds for interpreting the advent of large plants and animals on land. Philosophical Transactions of the Royal Society, London, B309: 105-142. doi.org/10.1098/rstb.1985.0074
  • 47. Schwertmann, U., Murad, E., 1988. The nature of an iron oxide - organic iron association in peaty environment. Clay Minerals, 23: 291-299. doi.org/10.1180/claymin.1988.023.3.06
  • 48. Sharkan, N., Achyuthan, H., 2007. Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: micromorphology and geochemical studies. Quaternary International, 175: 140-154. doi.org/10.1016/j.quaint.2007.05.017
  • 49. Sieglitz, R.D., Van Horn, R.G., 1982. Post-Pleistocene development of root-shaped ferruginous concretions. Ohio Journal of Science, 82: 14-18.
  • 50. Taylor, A.M., Goldring, R., 1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150: 141-148. doi.org/10.1144/gsjgs.150.1.014
  • 51. Uchman, A., Hanken, N.-M., 2013. The new trace fossil Gyrolithes lorcaensis isp. n. from the Miocene of SE Spain and a critical review of the Gyrolithes ichnospecies. Stratigraphy and Geological Correlation, 21: 72-84. doi: 10.1134/S0869593813030088
  • 52. Vepreskas, M.J., Lindbo, D.L., Stolt, M.H., 2018. Redoximorphic features. In: Interpretation of Micropmorphological Features of Soils and Regoliths (eds. G. Stoops, V. Marcelino and F. Mees): 424-445. Elsevier, Amsterdam.
  • 53. Versteegh, E.A.A., Black, S., Canti, M.G., Hodson, M.E., 2013. Earthworm-produced calcite granules: a new terrestrial palaeothermometer? Geochimica et Cosmochimica. Acta, 123: 351-357. doi: 10.1016/j.gca.2013.06.020
  • 54. Yoshida, H., Yamamoto, K., Murakami, Y., Katsuta, N., Hayashi, T., Naganuma, T., 2008. The development of Fe-nodules surrounding biological material mediated by microorganisms. Environmental Geology, 55: 1363-1374. doi: 10.1007/s00254-007-1087-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a352b8d-089c-4aee-bb46-1dbdce93261c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.