PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel bio-based flame-retardant thermosetting vinyl ester resin monomer was synthesized from castor oil. The chemical structures of the monomer was characterized by FTIR and 1H-NMR. In order to improve its rigidity and expand its application in the field of bio-based materials, it was mixed with certain proportions of another reactive bio-based VER monomer, which had rigid and strong polar groups, and then a series of copolymers were prepared with thermal curing method. Then their tensile property, hardness, morphology of fractured surface, flame retardant property, DMA and thermostability were all investigated. The results indicated that the copolymers had relatively high tensile strength of 11.2 MPa, and the limiting oxygen index is above 23% in all prepared copolymers. DMA demonstrates that the glass transition temperature of the cured resins is up to 56.1°C. Thermogravimetric analysis shows that the copolymers have excellent thermal stability.
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, China
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, China
  • Institute of Forest New Technology, CAF, Beijing 10091,China
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, China
  • Institute of Forest New Technology, CAF, Beijing 10091,China
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, China
  • Institute of Forest New Technology, CAF, Beijing 10091,China
autor
  • Institute of Chemical Industry of Forestry Products, CAF, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, China
  • Institute of Forest New Technology, CAF, Beijing 10091,China
Bibliografia
  • 1. Raquez, J.M., Deleglise, M., Lacrampe, M.F. & Krawczak, P. (2010). Thermosetting (bio) materials derived from renewable resources: a critical review. Prog. Polym. Sci. 35, 487–509. DOI: 10.1016/j.progpolymsci.2010.01.001.
  • 2. Yousefi, A., Lafleur, P.G. & Gauvinm R. (1997). Kinetic studies of thermoset cure reactions: a review. Polym. Comp.18, 157–168. DOI: 10.1002/pc.10270.
  • 3. Sultania, M., Yadaw, S.B., Rai, J.S.P. & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Mater. Sci. Eng. A. 527, 4560–4570. DOI: 10.1016/j.msea.2010.04.038.
  • 4. Boyard, N., Vayer, M., Sinturel, C., Erre, R. & Levitz, P. (2005). Study of the porous network developed during curing of thermoset blends containing low molar weight saturated polyester. Polymer. 46, 661–669. DOI: 10.1016/j.polymer.2004.11.094.
  • 5. Li, S., Yang, X., Huang, K., Li, M. & Xia, J. (2014). Design, preparation and properties of novel renewable UV-curable copolymers based on cardanol and dimer fatty acids. Prog. Org. Coat. 77, 388–394. DOI: 10.1016/j.porgcoat.2013.11.011.
  • 6. Yang, X., Li, S., Xia, J., Song, J., Huang, K. & Li, M. (2015). Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: preparation, characterization and properties. Ind. Crop. Prod. 63, 17–25. DOI: 10.1016/j.indcrop.2014.10.024.
  • 7. Benmokrane, B., Ali, A.H., Mohamed, H.M., EISafty, A. & Manalo, A. (2017). Laboratory assessment and durability performance of vinyl-ester, polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part. B. Eng. DOI: 10.1016/j.compositesb.2017.02.002.
  • 8. Afshar, A. Liao, H.T., Chiang, F.P. & Korach, C.S. (2016). Time-dependent changes in mechanical properties of carbon fiber vinyl ester composites exposed to marine environments. Compos. Struct. 144, 80–85. DOI: 10.1016/j.compstruct.2016.02.053.
  • 9. Can, E., Kinaci, E. & Palmese, G.R. (2015). Preparation and characterization of novel vinyl ester formulations derived from cardanol. Eur. Polym. J. 72, 129–147. DOI: 10.1016/j.eurpolymj.2015.09.010.
  • 10. Sultania, M., Rai, J.S.P. & Srivastava, D. (2009). Synthesis and curing of cardanol-based vinyl ester resins for applications in surface coatings-I. Paint. India. 9, 89–108.
  • 11. Ummartyotin, S. & Pechyen, C. (2016). Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renew. Sust. Energ. Rev. 62, 654–664. DOI: 10.1016/j.rser.2016.04.066.
  • 12. Kummerer, K. (2007). Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green. Chem. 9, 899–907. DOI: 10.1039/B618298B.
  • 13. Chiari, L. & Zecca, A. (2011). Constraints of fossil fules depletion on global warming projections. Energy. Policy. 39, 5026–5034. DOI: 10.1016/j.enpol.2011.06.011.
  • 14. Do, H., Park, J.H. & Kim, H.J. (2008). UV-curing behavior and adhesion performance of polumeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. 44, 3871–3882. DOI: 10.1016/j.eurpolymj.2008.07.046.
  • 15. Gobin, M., Loulergue, P., Audic, J.L. & Lemiegre, L. (2015). Synthesis and characterization of bio-based polyester materials from vegetable oil and short to long chain dicarboxylic acids. Ind. Crop. Prod. 70, 213–220. DOI: 10.1016/j.indcrop.2015.03.041.
  • 16. Konwar, U., Karak, N. & Mandal, M. (2010). Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Prog. Org. Coat. 68, 265–273. DOI: 10.1016/j.porgcoat.2010.04.001.
  • 17. Ebata, H., Yasuda, M., Toshima, K. & Matsumura, S. (2008). Poly (ricinoleic acid) based novel thermosetting elastomer. J. Oleo. Sci. 57, 315–320. DOI: 10.5650/jos.57.315.
  • 18. Park, S.J. Jin, F.L. & Lee, J.R. (2004). Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol. Chem. Phys. 205, 2048–2054. DOI: 10.1002/macp.200400214.
  • 19. Behr, A., Krema, S. & Kamper, A. (2012). Ethenolysis of ricinoleic acid methyl ester-an efficient way to the olechemical key substance methyl dec-9-enoate. RSC. Adv. 2, 12775–12781. DOI: 10.1039/C2RA22499B.
  • 20. Chandorkar, Y., Mards, G. & Basu, B. (2013). Structure, tensile properties and cytotoxicity assessment of sebacic acid based biodegradable polyesters with ricinoleic acid. J. Mater. Chem. B. 1, 865–875. DOI: 10.1039/C2TB00304J.
  • 21. Krasko, M.Y., Shikanow, A., Ezra, A. & Domb, A.J. (2003). Poly (ester anhydride) s prepared by the insertion of ricinoleic acid into poly(sebacic acid). J. Polym. Sci. Part. A: Polym. Chem. 41, 1059–1069. DOI: 10.1002/pola.10651.
  • 22. Salimon, J. & Salih, N. (2010). Modification of epoxidized ricinoleic acid for biolubricant base oil with improved flash and pour points. Asian. J. Chem. 22, 5468–5476.
  • 23. Lesage, P., Candy, J.P. & Hirigoyen, C. (1996). Selectve dehydrogenation of dipentene(R-(+)-limonene) into paracymene on silica supported palladium assisted by α-olefins as hydrogen acceptor. J. Mol. Cata. A: Chem. 112, 431–435. DOI: 10.1016/1381-1169(96)00220-8.
  • 24. Zhang, Q., Bi, L., Zhao, Z., Chen, Y., Li, D., Gu, Y., Wang, J., Chen, Y., Bo, C. & Liu, X. (2010). Application of ultrasonic spraying in preparation of p-cymene by industrial dipentene dehydrogention. Chem. Eng. J. 159, 190–194. DOI: 10.1016/j.cej.2010.02.052.
  • 25. Zhang, L., Zhang, M., Hu, L. & Zhou, Y. (2014). Synthesis of rigid polyurethane foams with castor oil-based flame retardant polyols. Ind. Crop. Prod. 52, 380–388. DOI: 10.1016/j.indcrop.2013.10.043.
  • 26 Qian, L., Ye, L., Xu, G., Liu, J. & Guo, J. (2011). The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups. Polym. Degrad. Stab. 96, 1118–1124. DOI: 10.1016/j.polymdegradstab.2011.03.001.
  • 27. Zhang, L., Zhang, M., Zhou, Y. & Hu, L. (2013). The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stab. 98, 2784–2794. DOI: 10.1016/j.polymdegradstab.2013.10.015.
  • 28. Gao, L., Wang, D., Wang, Y., Wang, J. & Yang, B. (2008). A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polym. Degrad. Stab. 93, 1308–1315. DOI: 10.1016/j.polymdegradstab.2008.04.004.
  • 29. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta & Dubois, J.M. (2009). New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. A. 63, 100–125. DOI: 10.1016/j.mser.2008.09.002.
  • 30. Mao, W., Li, S., Li, M., Yang, X., Song, J., Wang, M., Xia, J. & Huang, K. (2016). A Novel Flame Retardant UV-Curable Vinyl Ester Resin Monomer based on Industrial Dipentene: Preparation, Characterization and Properties. J. Appl. Polym. Sci. 133. DOI: 10.1002/app.44084.
  • 31. Asif, A., Shi, W., Shen, X. & Nie, K. (2005). Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched alipatic polyester of varying generation number. Polymer 46, 11066–11078. DOI: 10.1016/j.polymer.2005.09.046.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a332cd5-4205-42c5-94f5-400c3283e076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.