PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stal o podwyższonej odporności na korozję atmosferyczną

Autorzy
Identyfikatory
Warianty tytułu
EN
Weathering steel
Konferencja
Seminarium Instytutu Mechaniki Precyzyjnej „Zastosowanie antykorozyjnych, technicznych i dekoracyjnych powłok natryskiwanych cieplnie" (Sosnowiec, 22.10.2014, Polska)
Języki publikacji
PL
Abstrakty
PL
Na podstawie publikacji z ostatnich lat przedstawiono skład, właściwości i zastosowanie stali o podwyższonej odporności na korozję atmosferyczną. Opisano wpływ składników stopowych stali na szybkość korozji stali. Omówiono wpływ środowiska przemysłowego, wiejskiego i morskiego na szybkość powstawania patyny, jej skład i trwałość. Przytoczono wyniki prób opisu kinetyki wzrostu warstwy patyny w czasie ekspozycji. Przedstawiono także metodę przewidywania ubytków korozyjnych na podstawie wielkości parametrów znacząco wpływających na korozję.
EN
A review of recent publications describing the composition, properties and application of steel with high resistance to atmospheric corrosion is presented. The effect of alloying elements on steel durability and properties of patina formed on the surface is described. A discussion on the impact of the industrial, rural and marine atmosphere on the rate of patina formation and its composition is presented. The examples of attempts to establish the kinetics of patina growth during field expositions are given. The review is completed with describing of the methods of prediction the corrosion losses of weathering steel in relation to atmospheric parameters, which significantly affect corrosion process.
Rocznik
Tom
Strony
57--65
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Mechaniki Precyzyjnej, Warszawa
Bibliografia
  • [1] The technical overview of weathering steel for bridges and generał construction, Mittal Steel USA, www.arcelormittalna.com
  • [2] Barth K.E.: An assessment of weathering steel bridges in West Virginia. Proceedings of 8th International Conference on Short and Medium Span Bridge, Niagara Falls, Canada 2010.
  • [3] Křivýa V., Konečnýb P.: Real material properties of weathering steels used in bridge structures. „Procedia Engineering", 57, 2013, s. 624-633.
  • [4] Garwacka S., Pawelski S.: Most przez Wisłę koło Zakroczymia. „Inżynieria i Budownictwo", 3, 1994.
  • [5] Kaliński W.: Uszkodzenia i naprawa płyty ortotropowej mostu przez Wisłę w Zakroczymiu. „Inżynieria i Budownictwo", 10, 2009, s. 542-544.
  • [6] Kihira H.: Systematic approaches toward minimum maintenance risk management methods for weathering steel infrastructures. „Corrosion Science", 49, 2007,3.112-119.
  • [7] Fujii Y., Kihira M., Tanaka, Matsuoka K.: Corrosion risk management method to realize long-term durability of weathering steel bridges, Nippon Steel technical Report, No 97, 2008.
  • [8] Kim S.S.: Appropriate environmental sphere of application for unpainted weathering steel. „Journal of Industrial and Engineering Chemistry", 9, 2, 2003, s. 212-218.
  • [9] Technical Advisory 5140.22, Uncoated Weathering Steel in Structures, US Department of Transportation, Federal High-way Administration, 1989.
  • [10] BD7-01, Weathering steel for highway, structures volume 2 - Highway structures: section 3 - Materi¬als and components, Design manual for roads and bridge, UK, 2001.
  • [11] Hao L., Zhang S., Dong J., Ke W.: Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments. „Corrosion Science", 53, 2011,8.4187-4192.
  • [12] Hao L., Zhang S., Dong J., Ke W.: Atmospheric corrosion resistance of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere. „Corrosion Science", 58, 2012, s. 175-180.
  • [13] Kihira H., Ito S., Murata T.: The behaviour of phosphorus during passivation of weathering steel protective patina. „Corrosion Science", 31, 1990, s. 383-388.
  • [14] Nishimura T.: Corrosion Behaviour of Silicon-Bearing Steel in a Wet/Dry Environment Containing Chloride lons. „Materials Transactions", 48, 6, 2007, s.1438-1443.
  • [15] Kim K.Y., Hwang Y.H., Yoo J.Y.: Effect of Silicon Content on the Corrosion Properties of Calcium-Modified Weathering Steel in a Chloride Environment. „Corrosion" 58, 2002, s. 570-583.
  • [16] Nishimura T.: Rust formation and corrosion performance of Si- and Al-bearing ultrafine grained weathering steel. „Corrosion Science", 50, 2000, s. 1306-1312.
  • [17] Nishimura T.: Electrochemical behavior and structure of rust formed on Si and Al-bearing steel after atmospheric exposure. „Corrosion Science", 52, 2010,5.3609-3614.
  • [18] Raman B., Nishimura T.: Microstructure of the rust formed on Si-AI bearing ultrafine-grained weathering steel. „Microstructure and Texture in Steels", 2009, s. 431-438.
  • [19] ChenX.H., Dong J.H., Han E.H., Ke W.: Effect of Ni on the ion-selectivity of rust, layer on Iow alloy steel. „Mater. Lett." 61, 2007, s. 4050-4053.
  • [20] Nishimura T., Katayama H.: Effect of Co and Ni on the corrosion behavior of Iow alloy steels in wet/dry environments, Corrosion Science, 42, 2000, s. 1611-1621.
  • [21] Nishimura T.T., Noda K., Kodama T.: Corrosion behavior of tungsten-bearing steel in a wet/dry environment containing chloride ions. „Corrosion", 57, 2001,s. 53-75.
  • [22] Nagano H., Yamashita M.: Formation of corrosion protective rust on steel exposed to the atmosphere, hppt://zkk.co.jp.
  • [23] Yamashita M., Miyuki H., Matsuda Y., Nagano H., Misawa T.: The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. „Corrosion Science", 36, 2, 1994, s. 283-299.
  • [24] Yamashita M., Shimizu T., Konishi H., Mizuki J., Uchida U.: Structure and protective performance of atmospheric corrosion product of Fe-Cr alloy film analysed by Mossbauer spectroscopy and with synchrotron radiation X-rays, „Corrosion Science", 45, 2, 2003, s. 381-394.
  • [25] Cook D.C., Oh S.J., Balasubramanian R., Yama¬shita M.: The role of goethite in the formation of the protective corrosion layer on steels. „Hyperfine Interactions", 122, 1999, s. 59-70.
  • [26] Nishimura T., Kodama T.: Clarification of Chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses. „Corrosion Science", 45, 2003, s. 1073-1084.
  • [27] Diaz l., Cano H., Chico B., De la Fuente D., Morcillo M.: Some clarifications regarding on atmospheric corrosion of weathering steels, Hindawi Publishing Corporation. „International Journal of Corrosion", 2012.
  • [28] Asami M., Kikuchi M.: In-depth distribution of rust on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years. „Corrosion Science", 45, 2003, s. 2671-2688.
  • [29] Sei Oh J., Cook D.C., Townsend H.E.: Atmospheric corrosion of different steels in marinę, rural and industrial environments. „Corrosion Science", 41, 9, 1999,3. 1687-1702.
  • [30] Jaen J.A., Muñóz A., Justavino J., Hernandez C.: Characterization of initial atmospheric corrosion of conventional weathering steels and a mild steel in a tropical atmosphere. „Hyperfine Interactions", 192, 1,2009, s. 51-57.
  • [31] Leuenberger-Minge A.U., Buchmann B., Faller M., Richner P., Zobeli M.: Dose-response functions for weathering steel, copper and zinc obtained from a four-year exposure programme in Switzerland. „Corrosion Science", 44, 4, 2002, s. 675-687.
  • [32] Misawa T., Miyuki H.: Long-term exposure rust transformation and ion selectivity of Cr-substituted goethite consisting final protective rust layer on the weathering steel, Passivity and Localized Corrosion: An International Symposium in Honor of prof. Norio Sato, Electrochemical Society Proceedings, 1999.
  • [33] Kamimura T., Nasu S., Tazaki T., Kuzushita K., Morimoto S.: Mossbauer spectroscopic study of rust formed on a weathering steel and a mild steel ex-posed for a long term in an industrial environment, „Materials Transactions", 43, 4, 2002, s. 694-703.
  • [34] Wang J.H., Wei F.l., Chang Y.S., Shih H.C.: The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres. „Materials [39] Chemistry and Physics", 47, 1997, 1, s. 1-8.
  • [35] Kamimura T., Hara S., Miyuki H., Yamashita M., Uchida H.: Composition and protective ability of rust layer formed on weathering steel exposed to various environments. „Corrosion Science", 48, 9, 2006, s. 2799-2812.
  • [36] Townsend H.E.: Effects of alloying elements on the corrosion of steel in industrial atmospheres. „Corrosion", 57, 6, 2001, s. 497-501.
  • [37] Li Q.X., Wang Z.Y., Han W., Han E.H.: Characterization of the rust formed on weathering steel ex-posed to Oinghai salt lake atmosphere. „Corrosion Science", 50, 2008, s. 365-371.
  • [38] Ishikawa L, Kumagai M., Yasukawa A., Kandori K.: Characterization of rust on weathering steel by gas adsorption. „Corrosion", 57, 4, 2001, s. 346-352.
  • [39] Melchers R.E.: A new interpretation of the corrosion loss processes for weathering steel in marine atmospheres. „Corrosion Science", 50, 2008, s. 3446-3454.
  • [40] Tidblad J., Mikhailow A.A., Kucera V.: Unifield dose response function after 8 years of exposure, Pro-ceedings of UN/ECE Workshop on Quantification of Effects of Air Pollution on Materials, Berlin, 1998.
  • [41] Mikhailov AA, Strekalov P.V., Panchenko Y.M.: Atmospheric corrosion of metals in cold and ex-tremely cold climate. „Protection of Metals", 44, 7, 2008, s. 644-659.
  • [42] Klinesmith D.E., McCuen R.H., Albrecht P.: Effect of environmental conditions on corrosion rates. „Journal of Materials in Civil Engineering", 19, 2, 2007,s. 121-129.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a2952e2-9424-425e-8620-6cc980ffa59e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.