PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Parameter Tuning of A Binary Pareto Whale Optimization Algorithm Using Taguchi Grey Relational Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Parameter values of any metaheuristic algorithm affect the performance of the algorithm search. However, using statistics to estimate the proper values for the algorithm’s parameters will be feasible to make optimization algorithm more robust and effective. The aim of this paper is to investigate the optimal control parameter values for the Binary Pareto Whale Optimization Algorithm BPWOA, which is used for solving maintenance scheduling problem at a power plant. Three algorithm control parameters involving population size, iteration number, and archive size were fine-tuned using Taguchi-Grey Relational Analysis GRA to achieve an optimal maintenance schedule with maximum power supply, minimum fuel expense, and minimum Carbone Dioxide CO2 emissions. The algorithm runs carried out based on Taguchi experiment design using L25 orthogonal array. The Grey Relational Grade GRG metric is utilized to evaluate the BPWOA performance. The results show that the Taguchi-Grey relational analysis approach is a dependable and efficient way to generate new optimal values for the BPWOA control parameters, allowing for multi-objective power plant maintenance scheduling with fewer runs in less time and a 20% improvement in GRG of objectives.
Wydawca
Rocznik
Tom
Strony
93--99
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Production Engineering and Metallurgy University of Technology, Iraq
  • Production Engineering and Metallurgy University of Technology, Iraq
Bibliografia
  • [1] E. Uray, H. Hakli, S. Carbas, “Statistical investigation of the robustness for the optimization algorithms,” Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications, pp. 201–224, 2021.
  • [2] G. Joy, C. Huyck, X.S. Yang, “Review of Parameter Tuning Methods for Nature-Inspired Algorithms,” Benchmarks and Hybrid Algorithms in Optimization and Applications, pp. 33–47, 2023.
  • [3] M. Dubey, V. Kumar, M. Kaur, T.P. Dao, “A systematic review on harmony search algorithm: theory, literature, and applications,” Mathematical Problems in Engineering, pp. 1–22, 2021.
  • [4] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, 2016.
  • [5] M.H. Nadimi-Shahraki, H. Zamani, Z.A. Varzaneh, S. Mirjalili, “A Systematic Review of the Whale Optimization Algorithm: Theoretical Foundation, Improvements, and Hybridizations,” Archives of Computational Methods in Engineering, pp. 1–47, 2023.
  • [6] K. Lu, Z. Ma, “A modified whale optimization algorithm for parameter estimation of software reliability growth models,” Journal of Algorithms & Computational Technology, vol. 15, pp. 17483026211034442, 2021.
  • [7] R.A.F.I.D. Sagban, “Reactive approach for automating exploration and exploitation in ant colony optimization,” doctoral dissertation, Universiti Utara Malaysia, Malaysia, 2016.
  • [8] F. Hutter, H.H. Hoos, T. Stützle, “Automatic algorithm configuration based on local search,” AAAI, vol. 7, pp. 1152–1157, 2007.
  • [9] M. Birattari, J. Kacprzyk, Tuning metaheuristics: a machine learning perspective, vol. 197. Berlin: Springer, 2009.
  • [10] Duque, D.A. Múnera, D. Diaz, S. Abreu, “Solving QAP with Auto-parameterization in Parallel Hybrid Metaheuristics,” International Conference on Optimization and Learning, pp. 294–309, Cham, Springer International Publishing, 2021.
  • [11] E. Uray, S. Carbas, Z.W. Geem, S. Kim, “Parameters optimization of Taguchi method integrated hybrid harmony search algorithm for engineering design problems,” Mathematics, vol. 10, no. 3, p. 327, 2022.
  • [12] A.J. Haleel, L.M. Dawood, “Binary Pareto Multi-Objective Whale Optimization Algorithm for Power Plant Maintenance Scheduling,” Iraqi Journal of Computers, Communications, Control and Systems Engineering, 2024, (In Press).
  • [13] A.C.K. Ferrari, G.V. Leandro, L. dos Santos Coelho, C.A.G. da Silva, E.G. de Lima, C. R. Chaves, “Tuning of control parameters of grey wolf optimizer using fuzzy inference,” IEEE Latin America Transactions, vol. 17, no. 07, pp. 1191–1198, 2019.
  • [14] E. Shadkam, “Parameter setting of meta-heuristic algorithms: A new hybrid method based on DEA and RSM,” Environmental Science and Pollution Research, vol. 29, no. 15, pp. 22404–22426, 2022.
  • [15] C.G. Tan, S.S. Choong, L.P. Wong, “A machine-learningbased approach for parameter control in bee colony optimization for traveling salesman problem,” International Conference on Technologies and Applications of Artificial Intelligence (TAAI), pp. 54–59, IEEE, 2021.
  • [16] H. Wang, Q. Geng, Z. Qiao, “Parameter tuning of particle swarm optimization by using Taguchi method and its application to motor design,” 4th IEEE International Conference on Information Science and Technology, pp. 722–726, IEEE, 2014.
  • [17] S.M. Mousavi, P. Shahnazari-Shahrezaei, “Minimizing the Makespan and Total Tardiness in Hybrid Flow Shop Scheduling with Sequence-Dependent Setup Times,” Management and Production Engineering Review, vol. 14, 2023.
  • [18] H.M. Pandey, “Parameters quantification of genetic algorithm,” Information Systems Design and Intelligent Applications: Proceedings of Third International Conference INDIA 2016, Volume 2, pp. 711–719, Springer India, 2016.
  • [19] X. Jia, G. Lu, “A hybrid Taguchi binary particle swarm optimization for antenna designs,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 8, pp. 1581–1585, 2019.
  • [20] R.K. Agrawal, B. Kaur, S. Sharma, “Quantum based whale optimization algorithm for wrapper feature selection,” Applied Soft Computing, vol. 89, p. 106092, 2020.
  • [21] Y. Cao, Y. Li, G. Zhang, K. Jermsittiparsert, M. Nasseri, “An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm,” Energy Reports, vol. 6, pp. 530–542, 2020.
  • [22] Q.V. Pham, S. Mirjalili, N. Kumar, M. Alazab, W.J. Hwang, “Whale optimization algorithm with applications to resource allocation in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4285–4297, 2020.
  • [23] J. Wang, J. Bei, H. Song, H. Zhang, P. Zhang, “A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation,” Applied Soft Computing, vol. 137, p. 110130, 2023.
  • [24] T.K. Dao, T.S. Pan, J.S. Pan, “A multi-objective optimal mobile robot path planning based on whale optimization algorithm,” IEEE 13th International Conference on Signal Processing (ICSP), pp. 337–342, IEEE, 2016.
  • [25] W. Yankai, W. Shilong, L. Dong, S. Chunfeng, Y. Bo, “An improved multi-objective whale optimization algorithm for the hybrid flow shop scheduling problem considering device dynamic reconfiguration processes,” Expert Systems with Applications, vol. 174, p. 114793, 2021.
  • [26] W. Guo, T. Liu, F. Dai, P. Xu, “An improved whale optimization algorithm for forecasting water resources demand,” Applied Soft Computing, vol. 86, p. 105925, 2020.
  • [27] Y. Mousavi, A. Alfi, I.B. Kucukdemiral, “Enhanced fractional chaotic whale optimization algorithm for parameter identification of isolated wind-diesel power systems,” IEEE Access, vol. 8, pp. 140862–140875, 2020.
  • [28] T.A. Sazon, Q. Zhang, H. Nikpey, “Comparison of different configurations of a solar-assisted ground-source CO2 heat pump system for space and water heating using Taguchi-Grey Relational analysis,” Energy Conversion and Management, vol. 300, p. 117881, 2024.
  • [29] P.A. Sylajakumari, R. Ramakrishnasamy, G. Palaniappan, “Taguchi grey relational analysis for multi-response optimization of wear in co-continuous composite,” Materials, vol. 11, no. 9, pp. 1743, 2018.
  • [30] S. Jozić, D. Bajić, L. Celent, “Application of compressed cold air cooling: achieving multiple performance characteristics in end milling process,” Journal of Cleaner Production, vol. 100, pp. 325–332, 2015.
  • [31] F. Kolahan, M.A. Moghaddam, “The use of Taguchi method with grey relational analysis to optimize the EDM process parameters with multiple quality characteristics,” Scientia Iranica, vol. 22, no. 2, pp. 530–538, 2015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a253f46-d76a-4f74-abe4-17d629120fa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.