PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sonochemical processes in the decomposition of organic micropollutants from rainwater

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Sonochemiczne procesy w usuwaniu zanieczyszczeń mikroorganicznych z wody deszczowej
Języki publikacji
EN
Abstrakty
EN
A wide range of aquatic systems, drinking water, groundwater and surface water is known to include several dangerous organic micropollutants (OMPs). Additionally, a lot of the OMPs that have been found are resistant to biodegradation, allowing the possibility of persistence and accumulation in the ecosystem. Although they are present in small amounts, they have the potential to cause major health issues, such as cancer. Recent studies showed that ultrasonication is very successful in removing numerous hazardous OMPs from water. However, there is a tendency of combining this method with other advanced oxidation processes because of some of this technology’s limitations. This study provided additional evidence that ultrasonication is a highly effective approach for removing micropollutants from rainwater. The efficiency of this technique can even be higher than 80%. Moreover, the addition of ozone and hydrogen peroxide during ultrasonication increased the removal ratio significantly, which was proportional to the oxidant dosage.
PL
Obecnie w wodzie wodociągowej w wodach gruntowych oraz w wodach powierzchniowych powszechnie identyfikuje się niebezpieczne małocząsteczkowe mikrozanieczyszczenia organiczne (OMPs). Ponadto wiele z nich jest odpornych na biodegradację, co stwarza możliwość ich akumulacji w środowisku. Pomimo że ich stężenie jest niewielkie, mogą powodować poważne problemy zdrowotne. Część mikrozanieczyszczeń jest również kancerogenna. Badania wykazują, że ultradźwięki mogą być bardzo skuteczne w usuwaniu wielu niebezpiecznych OMPs z wody. Istnieje jednak tendencja do łączenia tego procesu z innymi zaawansowanymi procesami utleniania (AOPs) ze względu na niektóre ograniczenia technologii nadźwiękawiania. Przeprowadzone badania dowiodły, że ultradźwięki są skuteczną metodą usuwania mikrozanieczyszczeń z wody deszczowej. Skuteczność tej techniki wyniosła nawet około 80%. Co więcej, dodatek ozonu i nadtlenku wodoru podczas procesu nadźwiękawiania zwiększył efektywność usuwania szkodliwych związków proporcjonalnie do dawki zastosowanego utleniacza.
Rocznik
Tom
Strony
85--97
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Department of Water and Wastewater Engineering
autor
  • Silesian University of Technology, Department of Water and Wastewater Engineering
  • Silesian University of Technology, Department of Water and Wastewater Engineering
Bibliografia
  • 1. Arslan, M. et al., (2017). Organic micropollutants in the environment: Ecotoxicity Potential and Methods for remediation. Springer International Publishing, pp. 65–97 doi: 10.1007/978-3-319-55426-6.
  • 2. Bohdziewicz, J. et al., (2016). Chromatographic determination and toxicological potential evaluation of selected micropollutants in aquatic environment – analytical problems. Desalination and Water Treatment, 57(3), pp. 1361–1369. doi: 10.1080/19443994. 2015.1017325.
  • 3. Chen, D., (2011). Applications of ultrasound in water and wastewater treatment. Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, pp. 373–405. doi: 10.1201/b11012-16.
  • 4. Copik, J., Kudlek, E. and Dudziak, M.. (2021). The use of ultrasound to removal of 4-tert octylphenol by hydrogen peroxide assistance, in the 2nd International Conference Strategies toward Green Deal Implementation – Water, Raw Materials & Energy – Monograph, pp. 60–69.
  • 5. Copik, J., Kudlek, E. and Dudziak, M., (2022). Degradation of bisphenol A and Pyrene from highway retention basin water using ultrasound enhanced by UV irradiation. Architecture Civil Engineering Environment, 2, pp. 135–148. doi: 10.2478/ACEE-2022-0021.
  • 6. Doosti, M. R., Kargar, R. and Sayadi, M.H., (2012). Water treatment using ultrasonic assistance: A review. Ecology, 2(2), pp. 96–110.
  • 7. Dudziak, M., Kudlek, E. and Burdzik-Niemiec, E., (2018). Decomposition of micropollutants and changes in the toxicity of water matrices subjected to various oxidation processes, Desalination and Water Treatment, 117(September), pp. 181–187. doi: 10.5004/dwt.2018.22233.
  • 8. Fraiese, A. et al., (2019). Removal of emerging contaminants in wastewater by sonolysis, photocatalysis and ozonation. Global Nest Journal, 21(2), pp. 98–105. doi: 10.30955/ gnj.002625.
  • 9. Gago-Ferrero, P., (2017). Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides and perfluoroaktyl substances in recipient waters. Sci. Total. Environment, 601, pp. 1289–1297.
  • 10. Gągol, M., Przyjazny, A. and Boczkaj, G., (2018). Wastewater treatment by means of advanced oxidation processes based on cavitation – A review. Chemical Engineering Journal, 338, pp. 599–627. doi: 10.1016/j.cej.2018.01.049.
  • 11. Kim, S. et al., (2016). PubChem substance and compound databases. Nucleic Acids Research, Jan 4;44(D1):D1202–13 doi: 10.1093/nar/gkv951.
  • 12. Kudlek, E., (2019). Influence of UV Irradiation Spectra on the Formation of Micropollutant Decomposition By-Products during Heterogeneous Photocatalysis. Proceedings, 16(1), p. 51. doi: 10.3390/proceedings2019016051.
  • 13. Lim, M., Son, Y. and Khim, J., (2014). The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrasonics Sonochemistry. Elsevier B.V., 21(6), pp. 1976–1981. doi: 10.1016/j.ultsonch.2014.03.021.
  • 14. Manariotis, I.D., Karapanagioti, H.K. and Chrysikopoulos, C.V., (2011). Degradation of PAHs by high frequency ultrasound. Water Research, 45(8), pp. 2587–2594. doi: 10.1016/j.watres.2011.02.009.
  • 15. Nie, M., Wang, Q. and Qiu, G., (2008). Enhancement of ultrasonically initiated emulsion polymerization rate using aliphatic alcohols as hydroxyl radical scavengers. Ultrasonics Sonochemistry, 15(3). doi: 10.1016/j.ultsonch.2007.03.010.
  • 16. Nikfar, E. et al. (2016). Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide. Journal of Molecular Liquids, 213. doi: 10.1016/j. molliq.2015.08.053.
  • 17. Pham, T. D. et al., (2009). Recent studies in environmental applications of ultrasound. Canadian Journal of Civil Engineering, 36(11), pp. 1849–1858. doi: 10.1139/L09-068.
  • 18. Rao, Y. et al., (2016). Sonolytic and sonophotolytic degradation of Carbamazepine: Kinetic and mechanisms. Ultrasonics Sonochemistry, 32, pp. 371–379. doi: 10.1016/j. ultsonch.2016.04.005.
  • 19. Rekhate, C.V. and Srivastava, J.K., (2020). Recent advances in ozone-based advanced oxidation processes for treatment of wastewater – A review. Chemical Engineering Journal Advances, 3(June), p. 100031. doi: 10.1016/j.ceja.2020.100031.
  • 20. Santana, C.M. et al., (2009). Methodologies for the extraction of phenolic compounds from environmental samples: New approaches. Molecules, 14(1), pp. 298–320. doi: 10.3390/molecules14010298.
  • 21. Serna-Galvis, E.A., Porras, J. and Torres-Palma, R.A., (2022). A critical review on the sonochemical degradation of organic pollutants in urine, seawater, and mineral water. Ultrasonics Sonochemistry, 82(August 2021), p. 105861. doi: 10.1016/j.ultsonch.2021.105861.
  • 22. Sörengård, M. et al., (2019). Mass loads, source apportionment, and risk estimation of organic micropollutants from hospital and municipal wastewater in recipient catchments. Chemosphere, 234, pp. 931–941. doi: 10.1016/j.chemosphere.2019.06.041.
  • 23. Vega, L.P., Soltan, J. and Peñuela, G.A., (2019). Sonochemical degradation of triclosan in water in a multifrequency reactor, Environmental Science and Pollution Research, 26(5), pp. 4450–4461. doi: 10.1007/s11356-018-1281-2.
  • 24. Web of Science https://wcs.webofknowledge.com/RA/analyze.do?product=WOS& SID=E5Z9Xpzwp9FrFPyAKmG&field=TASCA_JCRCategories_JCRCategories_ en&yearSort=false [23.05.2023].
  • 25. Zhang, K. et al., (2011). Degradation of bisphenol-A using ultrasonic irradiation assisted by low-concentration hydrogen peroxide. Journal of Environmental Sciences. 23(1), pp. 31–36. doi: 10.1016/S1001-0742(10)60397-X.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a243b99-c5eb-4458-a32e-852885c909df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.