Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of the research on mining production waste in the Chervonohrad Mining Area. For the first time the water extracts from certain types of waste rock, namely: burned and unburned argillite, siltstone, siliceous siltstone, coal, and sandstone were investigated. The studies covered the main chemical composition, as well as the pH and concentration of the main components of the aqueous extracts. Based on the obtained results, the properties of the investigated mining wastes were characterized, taking into account the impact on the environment. According to the obtained results, it can be stated that there is high content of Mg2+, SO42-, HCO3- in argillite and sandstone within the tericon of the central coal enrichment plant “Chervonohradska” and burnt argillite from the tericon of the Vizeyska mine.
Wydawca
Rocznik
Tom
Strony
247--255
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Department of Environmental Safety, Lviv State University of Life Safety, 35 Kleparivska Str., Lviv, 79007, Urkaine
autor
- Department of Сivil Protection and Сomputer Modeling Ecology-Geophysical Processes, Lviv State University of Life Safety, 35 Kleparivska Str., Lviv, 79007, Urkaine
Bibliografia
- 1. Malovanyy M., Shandrovych V., Malovanyy. A. Polyuzhyn. I. Comparative Analysis of the Effectiveness of Regulation of Aeration Depending on the Quantitative Characteristics of Treated Sewage Water. Journal of Chemistry, Journal of Chemistry, 8(2016) 1–9. https://doi.org/10.1155/2016/6874806
- 2. Shmandiy V., Bezdeneznych L., Kharlamova О., Svjatenko A., Malovanyy M., Petrushka K., Polyuzhyn I. 2017. Methods of salt content stabilization in circulating water supply systems. Chemistry & Chemical Technology, 11(2) 242–246. https://doi.org/10.23939/chcht11.02.242
- 3. Kostenko E., Melnyk L., Matko S., Malovanyy M. 2017. The use of sulphophtalein dyes immobilized on anionite Ab-17X8 to determine the contents of Pb(Ii), Cu(Ii), Hg(Ii) and Zn(Ii) in liquid medium. Chemistry & Chemical Technology, 11(1) 117–124. https://doi.org/10.23939/chcht11.01.117
- 4. Malovanyy M., Petrushka K., Petrushka I. 2019. Improvement of Adsorption-Ion-Exchange Processes for Waste and Mine Water Purification. Chemistry & Chemical Technology, 13(3) 372–376. https://doi.org/10.23939/chcht13.03.372
- 5. Popovych V., Telak J., Telak O., Malovanyy M., Yakovchuk R., Popovych N. 2020. Migration of Hazardous Components of Municipal Landfill Leachates into the Environment. Journal of Ecological Engineering, 21(1) 52–62. https://doi.org/ 10.12911/22998993/113246
- 6. Voytovych I., Malovanyy M., Zhuk V., Mukha O. 2020. Facilities and problems of processing organic wastes by family-type biogas plants in Ukraine. Journal of water and land development, 45(4–6), 185–189. https://doi.org/10.24425/jwld.2020.133493
- 7. Malovanyy M., Lyashok Y., Podkopayev S., Povzun O., Kipko O., Kalynychenko V., Virich S., Skyrda A. 2020. Environmental technologies for use of coal mining and chemical industry wastes. Journal of Ecological Engineering. 21(2) 95–103. https://doi.org/10.12911/22998993/116339
- 8. Tymchuk I., Shkvirko O., Sakalova H., Malovanyy M., Dabizhuk T., Shevchuk O., Vasylinych T. 2020. Wastewater a source of nutrients for crops growth and development. Journal of Ecological Engineering, 21(5) 88–96.
- 9. Bazaluk O., Ashcheulova O., Mamaikin O., Khorolskyi A., Lozynskyi V., Saik P. 2022. Innovative Activities in the Sphere of Mining Process Management. Frontiers in Environmental Science, 304.
- 10. Lazaruk Y., Karabyn V. 2020. Shale gas in Western Ukraine: Perspectives, resources, environmental and technogenic risk of production. Pet Coal, 62(3), 836–844.
- 11. Petlovanyi M.V., Zubko S.A., Popovych V.V., Sai K.S. 2020. Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy khimii i khimicheskoi tekhnologii, 6, 142–150. https://doi.org/0.32434/0321-4095-2020-133-6-142-150
- 12. Starodub Y., Karabyn V., Havrys A., Shainoga I., Samberg A. 2018. Flood risk assessment of Chervonograd mining-industrial district. Proc. SPIE 10783, 107830P. Event SPIE. Remote Sensing. 2018, Berlin, Germany 2018. https://doi.org/10.1117/12.2501928
- 13. Khorolskyi A., Hrinov V., Mamaikin O., Demchenko Y. 2019. Models and methods to make decisions while mining production scheduling. Mining of Mineral Deposits, 13(4), 53–62.
- 14. Karabyn V., Shtain B., Popovych V. 2018. Thermal regimes of spontaneous firing coal washing waste sites. News of the academy of sciences of the republic of Kazakhstan. Series of geology and technical sciences, 3(429), 64–74.
- 15. Popovych V., Stepova K., Voloshchyshyn A., Bosak P. 2019. Physico-chemical properties of soils in Lviv Volyn coal basin area. E3S Web of Conferences, 105, 02002. https://doi.org/10.1051/e3sconf/201910502002
- 16. Buchatska H.M. 2015. Zakonomirnosti formuvannya khimichnoho skladu vod Chervonohradsʹkoho hirnychopromyslovoho rayonu za rezulʹtatamy hidroheolohichnoho modelyuvannya. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatyuka. Ser. Biolohiya / redkol.: M. M. Barna, K. S. Volkov, V. V. Hrubinko [et al.]. Ternopil: TNPU. Vyp., 3/4(64), 70–74.
- 17. Bosak P., Popovych V., Stepova K., Dudyn R. 2020. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn coal basin. News of the National academy of sciences of the Republic of Kazakhstan. Series of Geology and Technical, 2(440), 48–54. https://doi.org/10.32014/2020.2518-170X.30
- 18. Knysh I., Karabyn V. 2014. Heavy metals distribution in the waste pile rocks of Chervonogradska mine of the Lviv-Volyn coal basin (Ukraine). Pollution Research Journal Papers, 33(4) 663–670.
- 19. Pavlychenko S.L., Kulyna S.L. 2015. Ekolohichna nebezpeka hirnychykh vidkhodiv likvidovanykh shakht Chervonohradskoho hirnychopromyslovoho rehionu. Zbirnyk naukovykh prats Natsionalnoho hirnychoho universytetu, 48, 216–222.
- 20. Czernaś K., Sawicki B., Zawiślak J. 2003. Właściwości fizyczno-chemiczne wody z rowu opaskowego wokół składowiska odpadów przywęglowych w Bogdance w aspekcie jej gospodarczego wykorzystania. Acta Agrophysica, 1(1), 55–60.
- 21. Stefaniak S., Twardowska I. 2009. Zmiany jakości wód podziemnych i powierzchniowych w wyniku kontaktu wód infiltracyjnych i zalewowych z obwałowaniem nasypu hydrotechnicznego wykonanego z odpadów górnictwa węglowego. Biuletyn państwowego instytutu geologicznego, 436(436-2), 483–488.
- 22. Popovych V., Voloshchyshyn A. 2019. Features of temperature and humidity conditions of extinguishing waste heaps of coal mines in spring. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(436), 230–237. https://doi.org/10.32014/2019.2518-170X.118
- 23. Bosak P.V. 2018. Fizyko-khimichni vlastyvosti stichnykh vod z tekhnolohichnykh vidvaliv Novovolynskoho hirnychopromyslovoho raionu. Visnyk Lvivskoho derzhavnoho uniwersytetu bezpeky zhyttiediialnosti, 18, 117–124. https://doi.org/https://doi.org/10.32447/20784643.18.2018.13]
- 24. Bryk D., Hvozdevych O., Kulchytska-Zhyhailo L., Podolskyi M. 2019. Tekhnohenni vuhlevmisni obyekty Chervonohradskoho hirnychopromyslovoho rayonu ta deyaki tekhnichni rishennya yikh vykorystannya. Heolohiya i heokhimiya horyuchykh kopalyn, 4(181), 45–65.
- 25. Baranov V.I. 2008. Ekolohichnyy opys porodnoho vidvalu vuhilʹnykh shakht TSZF ZAT «Lʹvivsystemenerho» yak ob’yekta dlya ozelenennya. Visnyk Lʹvivsʹkoho universytetu. Ser. Biolohichna, 46, 172–178.
- 26. Unified methods of water quality research. Directory. CMEA Part 1. M.: Yzdatelskyi otdel Upravlenyia delamy Sekretaryata SEV, 1987.
- 27. Method for performing measurements of mass concentrations of hydrocarbonate ions in samples of natural, surface waters of land by the method of potentiometric titration. PD 52.24.24-86. Kyiv, Ministerstvo okhorony navkolyshnoho pryrodnoho seredovyshcha, 1995.
- 28. Method of photometric determination of nitrates with salicylic acid in surface and biologically purified waters. KND 211.1.4.027-95. Kyiv, Ministerstvo okhorony navkolyshnoho pryrodnoho seredovyshcha, 1995.
- 29. Methodb of photometric detection of nitrite-ions with the Griess reagent in surface and treated wastewater. KND 211.1.4.023-95. Kyiv, Ministerstvo okhorony navkolyshnoho pryrodnoho seredovyshcha, 1995.
- 30. Bojarska K., Bzowski Z. 2012. Wyniki badania wyciągów wodnych odpadów wydobywczych z kopalń węgla Górnośląskiego Zagłębia Węglowego w aspekcie wpływu na środowisko. Górnictwo i Geologia, 7(2), 101–113.
- 31. Chudy K., Marszałek H., Kierczak J. 2014. Impact of hard-coal waste dump on water quality – а case study of Ludwikowice Klodzkie (Nowa Ruda Coalfield, SW Poland). J. Geochem. Explor., 146, 127–135. https://doi.org/10.1016/j.gexplo.2014.08.011
- 32. Grabowska K., Sowa M. 1999. Ekologiczna ocena wykorzystania odpadów pogórniczych z kopalń GSW S.A. dla celów inżynieryjnorekultywacyjnych. Zesz. Nauk. Politech. Śl., Górnictwo, 241, 73–87.
- 33. Loboichenko V.M., Vasyukov A.E., Tishakova T.S. 2017. Investigations of Mineralization of Water Bodies on the Example of River Waters of Ukraine Asian Journal of Water, Environment and Pollution, 14(4), 37–41. https://doi.org/10.3233/AJW-170035
- 34. Loboichenko V., Strelec V. 2018. The natural waters and aqueous solutions expressidentification as element of determination of possible emergency situation // Water and Energy International, 61(9), 43–51.
- 35. Kochmar I., Karabyn V., Karabyn O. 2022. Lead Speciation in the Technogenesis Zone of Coal Mining Sites (Case of Vizeyska Mine of Chervonohrad Mining Area, Lviv Region, Ukraine). Pet Coal., 64(2), 445–454.
- 36. Kochmar I.М., Karabyn V.V. 2022. Poshyrennya okremykh vazhkykh metaliv u porodakh terykona tsentralnoyi zbahachuvalnoyi fabryky «Chervonohradska» Lvivsko-Volynskoho kamyanovuhilnoho baseynu. Visnyk Lvivskoho derzhavnoho universytetu bezpeky zhyttyediyalnosti, 25, 5–12. https://doi.org/https://doi.org/10.32447/20784643.25.2022.01
- 37. Location of research objects, Lviv region, Ukraine https://mistaua.com/%D0%BC%D0%B0%D0%BF%D0%B0/?setcity=1096#l=4,1 &c=50.294000269278804,24.19618606567383,50.332915628099855,24.271888732910156.
- 38. Pancheva H., Reznichenko G., Miroshnichenko N., Sincheskul A., Pilipenko A., Loboichenko V. 2017. Study into the influence of concentration of ions of chlorine and temperature of circulated water on the corrosion carbon steel and cast iron. Eastern-European Journal of Enterprise Technologies, 4, 59–64.
- 39. About the approval of standards for the maximum permissible concentrations of unsafe speech in soils, as well as the transfer of such speech. https://zakon.rada.gov.ua/laws/show/1325-2021-%D0%BF#Text
- 40. Beshley M., Kryvinska N., Beshley H., Yaremko O., Pyrih J. 2021. Virtual Router Design and Modeling for Future Networks with QoS Guarantees. Electronics, 10(10) 1139. https://doi.org/10.3390/electronics10101139
- 41. Sajid F., Hassan M.A., Khan A.A., Rizwan M., Kryvinska N., Vincent K., Rhan I.U. 2022. Secure and efficient data storage operations by using inteligent classification technique and RSA algorithm in IoT-based cloud computing. Scientific Programming, 10. https://doi.org/10.1155/2022/2195646
- 42. Fomychov V., Fomychova L., Khorolskyi A., Mamaikin O., Pochepov V. 2020. Determining optimal border parameters to design a reused mine working. ARPN Journal of Engineering and Applied Sciences, 15(24), 3039–3049.
- 43. Hrinov V., Khorolskyi A. 2018. Improving the process of coal extraction based on the parameter optimization of mining equipment. E3S Web of Conferences, 60, 00017. https://doi.org/10.1051/e3sconf/20186000017
- 44. Azarov S., Yeremenko S., Shevchenko R., Shcherbak S., Mashkov V. 2020. Determination of integrated safety of high-risk structures according to criteria of acceptable and manageable risks. Materials Science Forum, 1006, 143–148.
- 45. Rashkevich N., Shevchenko R., Khmyrov I., Soshinskiy A. 2021. Investigation of the influence of the physical properties of landfill soils on the stability of slopes in the context of solving civil security problems. Materials Science Forum, 1038, 407–416.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a16af58-3850-4ed5-829f-731467a90859