PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of crosslinking conditions on the dynamic viscosity of organosilicon polymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents research concerning the development of an organosilicon polymer medium (polymethylhydroborosiloxane), that allows for the optimal selection of viscosity in the medium, for use as an admixture abrasive paste for abrasive flow machining. Based on the results of actual dynamic viscosity medium measurements, the influence of changes in temperature (25 °C, 50 °C and 75 °C) and in the concentration of the crosslinking solution (anhydrite boric acid – 2 wt.%, 4 wt.% and 6 wt.%) were studied. A number of crosslinking medium experiments were carried out, in which the characteristics of storage modulus G' and loss modulus G" of the medium containing different concentrations of crosslinking solutions at different temperature were determined. Due to the results obtained, it was possible to select the parameters of the crosslinking solution optimally both in terms of the temperature (50 °C) as well as its concentration (4 wt.%).
Rocznik
Strony
1557--1567
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr., wz.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Technology and Polymer Processing, Nadbystrzycka 36, PL-20618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Department of Technology and Polymer Processing, Nadbystrzycka 36, PL-20618 Lublin, Poland
Bibliografia
  • AO, Y., CAO, K., LIU, B., WANG, P., CHEN ,H., HUANG, W., JING, P., ZHAI, M., 2018. Prohibition of radiation-induced cross-linking of silica-reinforced silicone foam by oxygenation with H2O2. Radiat. Phys.Chem.151, 261-265.
  • BREMERSTEIN, T., POTTHOFF, A., MICHAELIS, A., SCHMIEDEL, C., UHLMANN, E., BLUG B., AMANN T., 2015. Wear of abrasive media and its effect on abrasive flow machining results, Wear 342-343, 44–51.
  • DIN, S., PARKER, S., BRADEN, M.,PATEL ,M., 2018. The effects of cross-linking agent and surfactant on the tear strength of novel vinyl polysiloxane impression materials. Dent. Mater. 34, e334-e343.
  • DOBRYNIN, M., PRETORIUS, C., KAMA, D., ROODT, A., BOYARSKIY, V., ISLAMOVA, R., 2019. Rhodium(I)-catalysed cross-linking of polysiloxanes conducted at room temperature. J. Catal. 372, 193-200.
  • DONG, F., ZHAO, P., DOU, R., FENG, S., 2019. Amine-functionalized POSS as cross-linkers of polysiloxane containing γ-chloropropyl groups for preparing heat-curable silicone rubber. Mater. Chem. Phys. 208, 19-27.
  • GARBACZ, T., 2004. Effect of selected auxiliary agents on the properties of surface layer of extruded polyethylene. Polimery 49, 23-28.
  • GARBACZ, T., SAMUJLO, B., 2008. Selected properties of geometric structure of the surface of cellular polyethylene products. Polimery 53, 471-476.
  • GROCHOWSKI, M., NOSAL-WIERCIŃSKA, A., WIŚNIEWSKA, M., SZABELSKA, A., GOŁȨBIOWSKA, B., 2016. The effects of homocysteine protonation on double layer parameters at the electrode/chlorates(VII) interface, as well as the kinetics and the mechanism of Bi(III) ion electroreduction. Electrochim. Acta 207, 48-57.
  • GRELLMENN, W., SEIDLER, S., 2007. Polymer Testing. Hanser 83-102.
  • HASHIMOTO, F., YAMAGUCHI, H., KRAJNIK, P., WEGENER,K., CHAUDHARI, R., HOFFMEISTER, H. W., KUSTER F., 2016. Abrasive fine-finishing technology. CIRP Annals –Manufacturing Technology 65, 597-620.
  • JACHOWICZ, T., GARBACZ, T., TOR-SWIATEK A., GAJDOŠ, I., CZULAK, A., 2015. Investigation of selected properties of injection-molded parts subjected to natural aging. Int. J. Polym. Anal. Ch. 20, 307-315.
  • KASAPGIL, E., ANAC, I., ERBIL, H., Transparent, fluorine-free, heat-resistant, water repellent coating by infusing slippery silicone oil on polysiloxane nanofilament layers prepared by gas phase reaction of n-propyltrichlorosilane and methyltrichlorosilane. Colloids Surf. A: Physicochem. Eng. Aspects 560, 223-232.
  • KAZMIERCZAK-RAZNA, J., NOWICKI, P., WIŚNIEWSKA, M., NOSAL-WIERCIŃSKA, A., PIETRZAK, R., 2017. Thermal and physicochemical properties of phosphorus-containing activated carbons obtained from biomass. J. Taiwan Inst. Chem. E. 80, 1006-1013.
  • KILJAŃSKI, T., 2014. Metody pomiaru własności sprężysto lepkich. Inżynieria i Aparatura Chemiczna 5, 344-346.
  • KRASINSKIY, V., SUBERLYAK, O., ANTONUK, V., JACHOWICZ, T., 2017. Rheological properties of compositions based on modified polyvinyl alcohol. Adv. Sci. Technol. Res. J. 11, 304-309.
  • KUMAR, S., HIREMATH, S. S.,2016. A review on abrasive flow machining (AFM) .ProcediaTechnol. 25, 1297-1304.
  • MAO, K., GREENWOOD, D., RAMAKRISNNAN, R., 2019. The wear resistance improvement of fibre reinforced polymer composite gears.Wear 426-427(Part B), 1033-1039.,
  • MEICHSNER, G., MEZGER, T. G., SCHRODER, J., 2016. Lackeigenschaften messen und steuern. Vincentz 2nd edition, 39-47.
  • MEZGER, T. G., 2002. The rheology handbook, VinzenzVerlag, Hannover 81-86, 98-103.
  • MEZGER, T. G., 2019. Applied rheology, Anton Paar 6th edition, 95-112.
  • NOSAL-WIERCIŃSKA, A., WIŚNIEWSKA,M., GROCHOWSKI,M., GUZIEJEWSKI,D., FRANUS,W., 2017. The effect of homocysteine and homocystine protonation on double-layer parameters at the electrode/chlorates(VII) interface. Adsorpt. Sci. Technol. 35, 396-402.
  • NOWACKA, A., KLEPKA, T., 2019. Zastosowanie polimerów jako mediów ściernych w obróbce przetłoczno-ściernej. Mechanik 4, 234-237.
  • PEI, X. O., FRIEDRICH, K., 2016. Friction and wear of polymer composites. Reference Module in Materials Science and Materials Engineering, 1-5.
  • SANKAR, M. R., JAIN, V. K., RAJURKAR, K. P., 2018. Nano-finishing studies using elastically dominant polymers blend abrasive flow finishing medium. Procedia CIRP 68, 529-534.
  • SIKORA, R., SASIMOWSKI, E., 2001. Polymer cross flow in the screw-based plasticating system. Polimery 46, 184-191.
  • SMOLA, C. M, 2010. Measurement of rheology and adhesion of pharmaceutical hot melt extrusion. University of Technology, Graz, 8-15, 27-35.
  • SUN, X., CEN, R., GAO, X.,LIU, Q., LIU, J., ZHANG, H., YU, J., LIU, P., TAKAHASHI, K., WANG, J., 2019. Fabrication of epoxy modified polysiloxane with enhanced mechanical properties formarine antifouling application. Eur. Polym. J. 117, 77-85.
  • TOTH, G., NAGY, D., BATA ,A., BELINA, K., 2018. Determination of polymer melts flow-activation energy a function of wide range shear rate. J. Phys. Conf. Ser. 1045, 012040.
  • WANG, C., CHENG, K. C., CHEN, K. Y., LIN, Y. C., 2018. A Study on the abrasive gels and the application of abrasive flow machining in complex-hole polishing. Procedia CIRP 68, 523-528.
  • WANG, R., LIM, P., HENG, L., MUN, S. D., 2017. Magnetic abrasive machining of difficult-to-cut materials for ultra-high-speed machining of AISI 304 bars. Materials 10, 1029-1041.
  • YADAV, S.K., SINGH, M.K., SINGH,B.R., 2011. Effect of unconventional machining on surface roughness of metal: aluminum and brass—a case study of abrasive flow, J. Phys. Sci. Eng.Technol. 2, 53-60.
  • YUAN,Q., CHAI, Z., HUANG, Z., HUANG, Q., 2019. A new precursor of liquid and curable polysiloxane for highly cost-efficient SiOC-based composites. Ceram. Int. 45, 7044-7048.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7a0bf1a6-30cf-4855-9fa3-c55bf65503c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.