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The article presents and compares modern methods of generating test data in the process of automatic software 
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1. Introduction 

Fuzzing is an automatic, pseudo-random software 
testing method. It consists in entering random, 
modified or erroneous test cases at the input of 
program in order to find an unhandled error [1]. 
This data is generated from scratch or on the basis 
of collected sets of correct test data, the so-called 
corpus. Fuzz tests were developed at  
the University of Wisconsin Madison in 1989 by 
Barton P. Miller, Louis Fredriksen and Bryan So. 
The aim of this project was originally to detect 
command line errors and to test the user interface 
of operating systems [2]. Fuzzing does not search 
for logical errors, but for those related to incorrect 
or dangerous use of the programming language  
by the application author. Nowadays, fuzzing is 
most often used for security audits of software 
written in languages such as C/C++ that do  
not have sufficient security mechanisms.  
The universality of this method also enables to test 
hardware solutions or operating systems [3].  
The implementation quality of cryptographic 
algorithms has also been successfully tested [4]. 

Typical errors found with fuzz test programs 
(fuzzers) are memory protection errors (when  
the program accesses a memory area not allocated 
to it), buffer overflow, stack overflow, or variable 
overflow (when the size of structure exceeds the 
amount of memory allocated to it) [5]. These 
errors allow unauthorized access to program 
memory areas against the author’s intentions. 

Fuzzing can be divided according to  
the knowledge level of the source code and  
the way test cases are generated. Black-box 
fuzzing is characterized by a lack of knowledge of 
the source code by the tester, based on the ability 

to solely evaluate the correctness of the program 
execution. Grey-box fuzzing are similar to black-
box fuzz tests. They are characterized by  
the knowledge of some partial information about 
the program under study through its analysis. 
White-box fuzzing require the tester knows  
the program code, detailed information about the 
program behavior during its execution and  
the ability to current analysis of the source code. 

 

2. Selected test case generation 
methods 

An important part of fuzz tests is to generate test 
data. Appropriate selection of the method 
significantly affects the effectiveness of tests.  
The algorithm cannot create test sets that would be 
rejected by the tested program. At the same time, 
it is advisable to generate as many tests sets as 
possible, the servicing of which was not 
implemented in analyzed program [6]. 

Pseudo-random method – pseudo-random 
generation consists in creating completely random 
data and providing the tested application with 
input values. This solution is useful in verification 
of used in the program under study validation 
method and correct implementation of data 
storage in memory (e.g. when the generated data 
is too large). However, it is characterized by  
a large number of rejected test cases, which 
reduces the effectiveness of fuzzing [1]. Figure 1 
shows the construction of a fuzzer based on  
a pseudorandom generator. Random data 
generated by the generator is entered into a tested 
application. The application is monitored by an 
additional module that expects an unhandled error. 
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The errors found are deduplicated, resulting in  
an established set of found errors. 

 
Fig. 1. Diagram of fuzzer based on a pseudo-random 

generator 
 

Mutation method – based on a set of test 
cases – corpus. These cases may be published by 
the authors of tested software or collected by  
a person conducting the tests, e.g. using the 
Internet. They may also be selected test cases that 
have been chosen during previous tests. They may 
be characterized by a large code coverage of 
tested application or that they caused an error  
of another previously tested software or a previous 
version of the currently tested program. These 
cases are modified randomly (to a small extent), 
without taking into account the correctness of their 
structure [7]. Figure 2 presents the construction of 
a mutation fuzzer. The data entered into the tested 
program are modified test cases loaded from  
the corpus. 

 
 

Fig. 2. Diagram of fuzzer generating test cases by 
mutation method 

 
Grammatical method – in contrast to  

the mutation method takes into account  
the structure of test data. This method modifies 
test cases so that the newly created test case is 
correct in terms of file formatting. It can also be 
based on a corpus of test cases or, as in the case of 
pseudo-random method, generate completely new 
but structurally correct data [7]. Figure 3 presents 
the construction of a fuzzer based on  
a grammatical mutator. The principle of its 
operation is the same as in the case of a mutation 
fuzzer, except that random changes are made 
taking into account the correct structure of the file 
format of test case.  

 
 

Fig. 3. Diagram of fuzzer generating test cases by 
grammatical method 

 
 

Evolutionary method – uses the 
instrumentalization of tested software. On the 
basis of selected parameters, the program 
evaluates generated test cases in terms of their 
further usefulness and selects them [8]. Currently  
the most popular fuzzer based on this method  
is the American Fuzzy Loop by Michał Zalewski 
[9]. The AFL uses an author’s algorithm working 
according to the following steps list: 
1. Loading initial test cases. 
2. Load the first/following case from the list. 
3. Trim the file to the smallest size that does not 

change the program behavior. 
4. Performing a mutation according to  

the selected classical (mutation) strategy. 
5. If any of the new cases increases  

the coverage, add it to the list. 
Figure 4 shows the scheme of an advanced 
evolutionary fuzzer. It is enriched with a module 
called the corpus manager. He is responsible for 
the sections of generated test cases and adding 
them to the corpus. 

 
 

Fig. 4. Diagram of fuzzer generating test cases with an 
evolutionary algorithm 

 
 

3. Technology used in tests 

All the previously describled methods (pseudo-
random, mutation, grammatical and evolutionary 
method) have been implemented using the Python 
3.5 language. Currently, the most popular fuzzers 
are written in lower-level languages such as 
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C/C++. This is due to their speed in relation to 
object-oriented or scripting languages [10].  
For prototype purposes, Python allows faster 
project implementation in order to identify those 
methods that are worth further development and 
improvement. 

The pseudo-random numbers in each of these 
algorithms are generated by the Mersene Twister 
algorithm (MT19937). It is an algorithm for 
generating pseudo-random numbers developed by 
M. Matsumoto and T. Nishimura [11] in 1997. 
Although it is not recommended for cryptographic 
solutions, this generator is fast and provides high 
quality pseudo-random numbers. It is 
characterized by a period of length 219937 and  
a high degree of distribution uniformity. 

Code coverage can be measured by code line 
coverage, the number of code blocks activated by 
a test case or the number of activated edges in  
the control flow diagram. During the overview,  
the application code was covered according to  
the last criterion, analogous to the AFL fuzzer 
described above. For to measure the edge 
coverage, each critical edge in the program is 
divided into two by a “dummy” block (that 
process is shown on figure 5). In this way, it is 
possible to determine which path in the control 
flow graph activated a test case by 
instrumentalizing the program for activated code 
blocks. 

 
Fig. 5. Diagram showing the instrumentation of critical 

edge “A–C” by adding a block “D” 
 

Tested software was compiled using clang 
compiler which uses LLVM (back-end) to 
generate, optimize code and to measure the edge 
coverage [12]. Clang configuration parameters for 
evolutionary method: 
• clang -std=c99 -g undertest.c -

sanitize=address -fsanitize-coverage = trace-
pc-guard,edge,no-prune 

enable to measure the code coverage. For other 
methods, the gcc compiler is used: 
• gcc undertest.c -std=c99 

In the second case, the GNU Debugger 
(GDB) was used to debug the program in case of  
a program failure. 

The corpus used in tests was obtained from 
AFL project page [13]. Test suites composed of 
various types of graphic files dedicated to fuzzing 
process have been made available on this website. 

During the overview, 1000 of the largest 
JPEG files available at the above-mentioned web 
address were used. In cases where the number of 
files in the corpus was reduced to one hundred and 
one element in succession, the files were 
randomly selected. 

 

4. Tested software and comparison 
method 

 
The security tests were conducted on a specially 
written sample program that performs operations 
on the loaded *.jpeg graphic file. It was written to 
contain three security vulnerabilities such as 
integer overflow and buffer overflow. The first 
error is caused by incorrect estimation of the value 
that a variable of the integer type can accept while 
the program is running. A possible consequence of 
such an error is overwriting the memory preceding 
the buffer or overflowing the buffer. Buffer 
overflow is a programming error consisting in 
writing to a designated memory area more data 
than the programmer reserved for this purpose. 
This situation leads to overwriting the data stored 
in the memory behind the buffer, which leads to 
erroneous operation of the program. Using this 
error, the invader can trigger specific actions. 
Each of the described methods was used during 
24-hour tests. In order to carry them out (without 
the pseudo-random method, where each case is 
generated from scratch) three data corpus were 
used – consisting of 1, 100 and 1000 elements. 
The number of tests performed, the number of 
time-outs and the number of errors found, 
including unique errors, are interpreted as the 
experiment result. 
 
5. Results 

Test results were shown in tables 1–11. 
 
Tab. 1. Number of errors found with the corpus size 1 

 
Method/Corpus size 1 
Test time [h] 1 8 24 
Mutation 293 2261 6679 
Pseudo-random 622 5059 15684 
Grammatical 1195 9628 29487 
Evolutionary 1231 3826 12339 

http://lcamtuf.coredump.cx/afl/demo/
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Tab. 2. Number of errors found with the corpus  
size 100 

 
Method/Corpus size 100 
Test time [h] 1 8 24 
Mutation 10 90 267 
Pseudo-random 622 5059 15684 
Grammatical 108 565 1636 
Evolutionary 1518 38392 122880 

 
Tab. 3. Number of errors found with the corpus  

size 1000 
 

Method/Corpus size 1000 
Test time [h] 1 8 24 
Mutation 39 354 1074 
Pseudo-random 622 5059 15684 
Grammatical 110 778 2348 
Evolutionary 1399 36946 112038 

 
Deduplication was carried out by comparison 

of function call stack, which in case of error 
detection by the debugger was saved with the test 
case calling it. This enabled the identification of 
where the error occurred in the tested program and 
consequently excluded recurring errors. 

 
Tab. 4. Number of unique errors found with the corpus 

size 1 
 

Method/Corpus size 1 
Test time [h] 1 8 24 
Mutation 1 1 1 
Pseudo-random 1 1 1 
Grammatical 1 2 2 
Evolutionary 1 2 2 

 
Tab. 5. Number of unique errors found with the corpus 

size 100 
 

Method/Corpus size 100 
Test time [h] 1 8 24 
Mutation 1 1 2 
Pseudo-random 1 1 1 
Grammatical 1 2 2 
Evolutionary 2 3 3 

 
Tab. 6. Number of unique errors found with the corpus 

size 1000 
 

Method/Corpus size 1000 
Test time [h] 1 8 24 
Mutation 1 1 2 
Pseudo-random 1 1 1 
Grammatical 1 2 2 
Evolutionary 2 3 3 

 
The number of tests was influenced by  

the number of generated test cases, which caused 

the application to hang up. This resulted in  
a decrease in the number of tests, which translated 
into the number of errors found. During the tests, 
the maximum waiting time for the fuzzer to 
respond to the program was set at 1 second. 

 
Tab. 7. Percentage share of generated test cases, which 

caused time-out for the corpus size 1 
 

Method/Corpus size 1 
Test time [h] 1 8 24 
Mutation 14% 13% 13% 
Pseudo-random 20% 22% 21% 
Grammatical 6% 7% 6% 
Evolutionary 3% 5% 5% 

 
Tab. 8. Percentage share of generated test cases, which 

caused time-out for the corpus size 100 
 

Method/Corpus size 100 
Test time [h] 1 8 24 
Mutation 40% 45% 44% 
Pseudo-random 20% 22% 21% 
Grammatical 16% 17% 16% 
Evolutionary 1% 1% 1% 

 
Tab. 9. Percentage share of generated test cases, which 

caused time-out for the corpus size 1000 
 

Method/Corpus size 1000 
Test time [h] 1 8 24 
Mutation 31% 33% 34% 
Pseudo-random 20% 22% 21% 
Grammatical 16% 17% 16% 
Evolutionary 2% 2% 1% 

 
As a result of the evolutionary algorithm,  

the corpus size of test cases has been modified,  
as shown in Table 3. 

 
Tab. 10. Changes in the corpus size after fuzzing 

process with the use of AFL evolutionary algorithm 
 

Corpus size 1 100 1000 

The size of corpus 2 103 1006 
 

Tab. 11. Changes in the corpus size after fuzzing 
process with the use of AFL evolutionary algorithm 

 

Corpus size 1 100 1000 

Size before tests 4,01 KB 81,1 KB 2398,8 KB 

Size after tests 8,01 KB 83,0 KB 2410,3 KB 

 
All the compared methods made it possible to 

find the security errors. Advanced methods are 
characterized by a smaller number of time-outs 
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and a greater number of detected unique errors. 
The use of the evolutionary method allowed 
enriching the corpus with the new test cases. 
 
6. Conclusions 

The highest rate of error detection was found for 
the method using an evolutionary algorithm, 
derived from the AFL program. It found all three 
vulnerabilities in the software. During the 
algorithm’s operation, the corpus of test cases was 
modified. This allowed a significant increase in 
the number of tests performed. It was influenced 
by the number of time-outs caused by the tested 
program. The use of evolutionary algorithm 
enabled to eliminate test cases that hung up  
the tested application. This increased the number 
of tests performed and allowed for a more 
thorough analysis of the software. Considering  
the structure of peaks in the grammatical method 
also resulted in a reduction in the number of 
situations in which the tested software failed to 
respond. The comparison results indicate  
the important role of data corpus in the fuzzing 
process. A simple random selection of data is not 
effective due to undifferentiated test results.  
Too extensive corpuses cause a large number of  
time-outs, which significantly affects the number 
of tests performed. Sets of test cases that are too 
small cannot find a satisfactory number of security 
vulnerabilities. 
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Metody generowania danych testowych służących do przeprowadzania  
„fuzz testing” 

 
M. PACHNIK 

  
W artykule przedstawiono i porównano współczesne metody generowania danych testowych w procesie 
automatycznego testowania bezpieczeństwa oprogramowania, tzw. fuzz testing. W publikacji zawarto opisy metod 
stosowanych m.in. w aplikacjach lokalnych, sieciowych czy webowych, a następnie dokonano ich porównania  
i oceny skuteczności w procesie zapewniania bezpieczeństwa oprogramowania. Oceniony został wpływ jakości 
korpusu (zbioru) danych testowych na efektywność przeprowadzania zautomatyzowanych testów bezpieczeństwa. 
 
Słowa kluczowe: fuzzing, korpus danych testowych, błędy bezpieczeństwa. 


