
COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 27−32 (2019)

 27

Methods of generating test data for carrying out the fuzzing process

M. PACHNIK
marcin.pachnik@wat.edu.pl

Military University of Technology

ul. Kaliskiego 2, 01-489 Warsaw, Poland

The article presents and compares modern methods of generating test data in the process of automatic software
security testing, so called fuzz testing. The publication contains descriptions of methods used, among others,
in local, network or web applications, and then compares them and evaluates their effectiveness in the process of
ensuring software security. The impact of the quality of test data corpus on the effectiveness of automated security
testing has been assessed.

Keywords: fuzzing, test data corpus, security vulnerabilities.

DOI: 10.5604/01.3001.0013.6603

1. Introduction

Fuzzing is an automatic, pseudo-random software
testing method. It consists in entering random,
modified or erroneous test cases at the input of
program in order to find an unhandled error [1].
This data is generated from scratch or on the basis
of collected sets of correct test data, the so-called
corpus. Fuzz tests were developed at
the University of Wisconsin Madison in 1989 by
Barton P. Miller, Louis Fredriksen and Bryan So.
The aim of this project was originally to detect
command line errors and to test the user interface
of operating systems [2]. Fuzzing does not search
for logical errors, but for those related to incorrect
or dangerous use of the programming language
by the application author. Nowadays, fuzzing is
most often used for security audits of software
written in languages such as C/C++ that do
not have sufficient security mechanisms.
The universality of this method also enables to test
hardware solutions or operating systems [3].
The implementation quality of cryptographic
algorithms has also been successfully tested [4].

Typical errors found with fuzz test programs
(fuzzers) are memory protection errors (when
the program accesses a memory area not allocated
to it), buffer overflow, stack overflow, or variable
overflow (when the size of structure exceeds the
amount of memory allocated to it) [5]. These
errors allow unauthorized access to program
memory areas against the author’s intentions.

Fuzzing can be divided according to
the knowledge level of the source code and
the way test cases are generated. Black-box
fuzzing is characterized by a lack of knowledge of
the source code by the tester, based on the ability

to solely evaluate the correctness of the program
execution. Grey-box fuzzing are similar to black-
box fuzz tests. They are characterized by
the knowledge of some partial information about
the program under study through its analysis.
White-box fuzzing require the tester knows
the program code, detailed information about the
program behavior during its execution and
the ability to current analysis of the source code.

2. Selected test case generation
methods

An important part of fuzz tests is to generate test
data. Appropriate selection of the method
significantly affects the effectiveness of tests.
The algorithm cannot create test sets that would be
rejected by the tested program. At the same time,
it is advisable to generate as many tests sets as
possible, the servicing of which was not
implemented in analyzed program [6].

Pseudo-random method – pseudo-random
generation consists in creating completely random
data and providing the tested application with
input values. This solution is useful in verification
of used in the program under study validation
method and correct implementation of data
storage in memory (e.g. when the generated data
is too large). However, it is characterized by
a large number of rejected test cases, which
reduces the effectiveness of fuzzing [1]. Figure 1
shows the construction of a fuzzer based on
a pseudorandom generator. Random data
generated by the generator is entered into a tested
application. The application is monitored by an
additional module that expects an unhandled error.

Marcin Pachnik, Methods of generating test data for carrying out the fuzzing process

 28

The errors found are deduplicated, resulting in
an established set of found errors.

Fig. 1. Diagram of fuzzer based on a pseudo-random

generator

Mutation method – based on a set of test
cases – corpus. These cases may be published by
the authors of tested software or collected by
a person conducting the tests, e.g. using the
Internet. They may also be selected test cases that
have been chosen during previous tests. They may
be characterized by a large code coverage of
tested application or that they caused an error
of another previously tested software or a previous
version of the currently tested program. These
cases are modified randomly (to a small extent),
without taking into account the correctness of their
structure [7]. Figure 2 presents the construction of
a mutation fuzzer. The data entered into the tested
program are modified test cases loaded from
the corpus.

Fig. 2. Diagram of fuzzer generating test cases by
mutation method

Grammatical method – in contrast to

the mutation method takes into account
the structure of test data. This method modifies
test cases so that the newly created test case is
correct in terms of file formatting. It can also be
based on a corpus of test cases or, as in the case of
pseudo-random method, generate completely new
but structurally correct data [7]. Figure 3 presents
the construction of a fuzzer based on
a grammatical mutator. The principle of its
operation is the same as in the case of a mutation
fuzzer, except that random changes are made
taking into account the correct structure of the file
format of test case.

Fig. 3. Diagram of fuzzer generating test cases by
grammatical method

Evolutionary method – uses the
instrumentalization of tested software. On the
basis of selected parameters, the program
evaluates generated test cases in terms of their
further usefulness and selects them [8]. Currently
the most popular fuzzer based on this method
is the American Fuzzy Loop by Michał Zalewski
[9]. The AFL uses an author’s algorithm working
according to the following steps list:
1. Loading initial test cases.
2. Load the first/following case from the list.
3. Trim the file to the smallest size that does not

change the program behavior.
4. Performing a mutation according to

the selected classical (mutation) strategy.
5. If any of the new cases increases

the coverage, add it to the list.
Figure 4 shows the scheme of an advanced
evolutionary fuzzer. It is enriched with a module
called the corpus manager. He is responsible for
the sections of generated test cases and adding
them to the corpus.

Fig. 4. Diagram of fuzzer generating test cases with an
evolutionary algorithm

3. Technology used in tests

All the previously describled methods (pseudo-
random, mutation, grammatical and evolutionary
method) have been implemented using the Python
3.5 language. Currently, the most popular fuzzers
are written in lower-level languages such as

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 27−32 (2019)

 29

C/C++. This is due to their speed in relation to
object-oriented or scripting languages [10].
For prototype purposes, Python allows faster
project implementation in order to identify those
methods that are worth further development and
improvement.

The pseudo-random numbers in each of these
algorithms are generated by the Mersene Twister
algorithm (MT19937). It is an algorithm for
generating pseudo-random numbers developed by
M. Matsumoto and T. Nishimura [11] in 1997.
Although it is not recommended for cryptographic
solutions, this generator is fast and provides high
quality pseudo-random numbers. It is
characterized by a period of length 219937 and
a high degree of distribution uniformity.

Code coverage can be measured by code line
coverage, the number of code blocks activated by
a test case or the number of activated edges in
the control flow diagram. During the overview,
the application code was covered according to
the last criterion, analogous to the AFL fuzzer
described above. For to measure the edge
coverage, each critical edge in the program is
divided into two by a “dummy” block (that
process is shown on figure 5). In this way, it is
possible to determine which path in the control
flow graph activated a test case by
instrumentalizing the program for activated code
blocks.

Fig. 5. Diagram showing the instrumentation of critical

edge “A–C” by adding a block “D”

Tested software was compiled using clang
compiler which uses LLVM (back-end) to
generate, optimize code and to measure the edge
coverage [12]. Clang configuration parameters for
evolutionary method:
• clang -std=c99 -g undertest.c -

sanitize=address -fsanitize-coverage = trace-
pc-guard,edge,no-prune

enable to measure the code coverage. For other
methods, the gcc compiler is used:
• gcc undertest.c -std=c99

In the second case, the GNU Debugger
(GDB) was used to debug the program in case of
a program failure.

The corpus used in tests was obtained from
AFL project page [13]. Test suites composed of
various types of graphic files dedicated to fuzzing
process have been made available on this website.

During the overview, 1000 of the largest
JPEG files available at the above-mentioned web
address were used. In cases where the number of
files in the corpus was reduced to one hundred and
one element in succession, the files were
randomly selected.

4. Tested software and comparison
method

The security tests were conducted on a specially
written sample program that performs operations
on the loaded *.jpeg graphic file. It was written to
contain three security vulnerabilities such as
integer overflow and buffer overflow. The first
error is caused by incorrect estimation of the value
that a variable of the integer type can accept while
the program is running. A possible consequence of
such an error is overwriting the memory preceding
the buffer or overflowing the buffer. Buffer
overflow is a programming error consisting in
writing to a designated memory area more data
than the programmer reserved for this purpose.
This situation leads to overwriting the data stored
in the memory behind the buffer, which leads to
erroneous operation of the program. Using this
error, the invader can trigger specific actions.
Each of the described methods was used during
24-hour tests. In order to carry them out (without
the pseudo-random method, where each case is
generated from scratch) three data corpus were
used – consisting of 1, 100 and 1000 elements.
The number of tests performed, the number of
time-outs and the number of errors found,
including unique errors, are interpreted as the
experiment result.

5. Results

Test results were shown in tables 1–11.

Tab. 1. Number of errors found with the corpus size 1

Method/Corpus size 1
Test time [h] 1 8 24
Mutation 293 2261 6679
Pseudo-random 622 5059 15684
Grammatical 1195 9628 29487
Evolutionary 1231 3826 12339

http://lcamtuf.coredump.cx/afl/demo/

Marcin Pachnik, Methods of generating test data for carrying out the fuzzing process

 30

Tab. 2. Number of errors found with the corpus
size 100

Method/Corpus size 100
Test time [h] 1 8 24
Mutation 10 90 267
Pseudo-random 622 5059 15684
Grammatical 108 565 1636
Evolutionary 1518 38392 122880

Tab. 3. Number of errors found with the corpus

size 1000

Method/Corpus size 1000
Test time [h] 1 8 24
Mutation 39 354 1074
Pseudo-random 622 5059 15684
Grammatical 110 778 2348
Evolutionary 1399 36946 112038

Deduplication was carried out by comparison

of function call stack, which in case of error
detection by the debugger was saved with the test
case calling it. This enabled the identification of
where the error occurred in the tested program and
consequently excluded recurring errors.

Tab. 4. Number of unique errors found with the corpus

size 1

Method/Corpus size 1
Test time [h] 1 8 24
Mutation 1 1 1
Pseudo-random 1 1 1
Grammatical 1 2 2
Evolutionary 1 2 2

Tab. 5. Number of unique errors found with the corpus

size 100

Method/Corpus size 100
Test time [h] 1 8 24
Mutation 1 1 2
Pseudo-random 1 1 1
Grammatical 1 2 2
Evolutionary 2 3 3

Tab. 6. Number of unique errors found with the corpus

size 1000

Method/Corpus size 1000
Test time [h] 1 8 24
Mutation 1 1 2
Pseudo-random 1 1 1
Grammatical 1 2 2
Evolutionary 2 3 3

The number of tests was influenced by

the number of generated test cases, which caused

the application to hang up. This resulted in
a decrease in the number of tests, which translated
into the number of errors found. During the tests,
the maximum waiting time for the fuzzer to
respond to the program was set at 1 second.

Tab. 7. Percentage share of generated test cases, which

caused time-out for the corpus size 1

Method/Corpus size 1
Test time [h] 1 8 24
Mutation 14% 13% 13%
Pseudo-random 20% 22% 21%
Grammatical 6% 7% 6%
Evolutionary 3% 5% 5%

Tab. 8. Percentage share of generated test cases, which

caused time-out for the corpus size 100

Method/Corpus size 100
Test time [h] 1 8 24
Mutation 40% 45% 44%
Pseudo-random 20% 22% 21%
Grammatical 16% 17% 16%
Evolutionary 1% 1% 1%

Tab. 9. Percentage share of generated test cases, which

caused time-out for the corpus size 1000

Method/Corpus size 1000
Test time [h] 1 8 24
Mutation 31% 33% 34%
Pseudo-random 20% 22% 21%
Grammatical 16% 17% 16%
Evolutionary 2% 2% 1%

As a result of the evolutionary algorithm,

the corpus size of test cases has been modified,
as shown in Table 3.

Tab. 10. Changes in the corpus size after fuzzing

process with the use of AFL evolutionary algorithm

Corpus size 1 100 1000

The size of corpus 2 103 1006

Tab. 11. Changes in the corpus size after fuzzing
process with the use of AFL evolutionary algorithm

Corpus size 1 100 1000

Size before tests 4,01 KB 81,1 KB 2398,8 KB

Size after tests 8,01 KB 83,0 KB 2410,3 KB

All the compared methods made it possible to

find the security errors. Advanced methods are
characterized by a smaller number of time-outs

COMPUTER SCIENCE AND MATHEMATICAL MODELLING 9 27−32 (2019)

 31

and a greater number of detected unique errors.
The use of the evolutionary method allowed
enriching the corpus with the new test cases.

6. Conclusions

The highest rate of error detection was found for
the method using an evolutionary algorithm,
derived from the AFL program. It found all three
vulnerabilities in the software. During the
algorithm’s operation, the corpus of test cases was
modified. This allowed a significant increase in
the number of tests performed. It was influenced
by the number of time-outs caused by the tested
program. The use of evolutionary algorithm
enabled to eliminate test cases that hung up
the tested application. This increased the number
of tests performed and allowed for a more
thorough analysis of the software. Considering
the structure of peaks in the grammatical method
also resulted in a reduction in the number of
situations in which the tested software failed to
respond. The comparison results indicate
the important role of data corpus in the fuzzing
process. A simple random selection of data is not
effective due to undifferentiated test results.
Too extensive corpuses cause a large number of
time-outs, which significantly affects the number
of tests performed. Sets of test cases that are too
small cannot find a satisfactory number of security
vulnerabilities.

7. Bibliography

[1] Takanen A., Demott J.D., Miller C., Fuzzing
for Software Security Testing and Quality
Assurance, Artech House, Norwood, 2008.

[2] So B., Fredriksen L., Miller B.P.,
“An empirical study of the reliability of
UNIX utilities”, Communications of
the ACM, Vol. 33, 32–44 (1990).

[3] Schumilo S., Aschermann C., Gawlik R.,
Schinzel S., Thorsten H., “kAFL: Hardware-
-assisted feedback fuzzing for OS kernels”,
in: Proceedings of the 26th USENIX Security
Symposium, pp. 167–182, 26th USENIX
Security Symposium, Vancouver, BC,
Canada, August 16–18, 2017.

[4] Böck H., How Heartbleed could’ve been
found 2015, https://blog.hboeck.de/archives/
868-How-Heartbleed-couldve-been-
found.html.

[5] Josef Nelißen, Buffer Overflows for
Dummies, SANS Institute, Swansea, 2002.

[6] Li J., Zhao B., Zhang Ch., “Fuzzing:
a survey”, Cybersecurity, Vol. 1, 1–13,
(2018).

[7] Zeller A., Gopinath R., Böhme M., Fraser G.,
Holler Ch., Generating Software Tests,
https://www.fuzzingbook.org/.

[8] Veggalam S., Rawat S., Haller I., Bos H.,
“Ifuzzer: An evolutionary interpreter fuzzer
using genetic programming”, Lecture Notes
in Computer Science, Vol. 9878, 581–601
(2016).

[9] Zalewski M., Technical “whitepaper” for
afl-fuzz, http://lcamtuf.coredump.cx/afl/
technical_details.txt.

[10] Software in the Public Interest, Inc. – Debian
Project C++ g++ versus Python 3 fastest
programs, https://benchmarksgame-
team.pages.debian.net/benchmarksgame/faste
st/python3-gcc.html.

[11] Matsumoto M., Takuji Nishimura, “Mersenne
twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator”,
ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 1, 3–30
(1998).

[12] Lattner C., Adve V., “LLVM: a Compilation
Framework for Lifelong Program Analysis &
Transformation”, in: Proceedings of the
International Symposium on Code
Generation and Optimization, Palo Alto
California, USA, March 21–24, 2004.

[13] Zalewski M., afl-generated, minimized image
test sets, http://lcamtuf.coredump.cx/
afl/demo.

Marcin Pachnik, Methods of generating test data for carrying out the fuzzing process

 32

Metody generowania danych testowych służących do przeprowadzania
„fuzz testing”

M. PACHNIK

W artykule przedstawiono i porównano współczesne metody generowania danych testowych w procesie
automatycznego testowania bezpieczeństwa oprogramowania, tzw. fuzz testing. W publikacji zawarto opisy metod
stosowanych m.in. w aplikacjach lokalnych, sieciowych czy webowych, a następnie dokonano ich porównania
i oceny skuteczności w procesie zapewniania bezpieczeństwa oprogramowania. Oceniony został wpływ jakości
korpusu (zbioru) danych testowych na efektywność przeprowadzania zautomatyzowanych testów bezpieczeństwa.

Słowa kluczowe: fuzzing, korpus danych testowych, błędy bezpieczeństwa.

