Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3D printing has recently been experiencing a period of extremely rapid development. This is due to the fact that researchers as well as the industry recognize the many advantages of 3D printing. The dynamic development of this field brings about the advancement of new technologies, leading to the search for new photocurable resin formulations that enable efficient 3D printing in various environments. The development of an appropriate photocurable resin for 3D printing in the aqueous environment of electroplating baths is a crucial aspect in designing new devices for multi-material 3D printing that utilize coupled processes of electrodeposition and photopolymerization. Therefore, this article analyzes the effect of different environments on the kinetics of the photopolymerization process of photo-curable compositions dedicated to 3D printing. The study was carried out in four different environments: argon, water, saturated copper (II) sulfate solution and saturated copper (II) sulfate solution acidified with monomolar sulfuric (VI) acid. The work used techniques such as Fluorescent Probe Technique, photorheology, rheology and Raman spectroscopy to investigate the course of the photopolymerization process. The results of the experiments showed that the environment has a significant effect on the degree of conversion of monomers and on the rate of the photopolymerization process itself.
Rocznik
Tom
Strony
art. no. e77
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Civil Engineering, Wind Engineering Laboratory, Warszawska 24, 31-155 Cracow, Poland
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland
autor
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Department of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
- 1. Abramov L.I., Zilberman Y.N., Ivanova V.I., 1989. Effect of copper and iron salts on the radical polymerization of acrylamide in water. Polym. Sci. U.S.S.R., 31, 1573–1578. DOI:10.1016/0032-3950(89)90501-7.
- 2. Ahn D., Stevens L.M., Zhou K., Page Z.A., 2020. Rapid high-resolution visible light 3D printing. ACS Cent. Sci., 6, 1555–1563. DOI: 10.1021/acscentsci.0c00929.
- 3. Ambrosi A., Webster R.D., Pumera M., 2020. Electrochemically driven multi-material 3D-printing. Appl. Mater. Today, 18, 100530. DOI: 10.1016/j.apmt.2019.100530.
- 4. Asif M., Lee J.H., Lin-Yip M.J., Chiang S., Levaslot A., Giffney T., Ramezani M., Aw K.C., 2018. A new photopolymer extrusion 5-axis 3D printer. Addit. Manuf., 23, 355–361. DOI: 10.1016/j.addma.2018.08.026.
- 5. Asif M., Ramezani M., Sun X., Xu X., Giffney T., Aw K.C., 2017. A new 3D printing technique using extrusion of photopolymer. Twenty-fifth International Conference on Process and Fabrication of Advanced Materials (PFAM-XXV). 22-25 January 2017, Auckland,New Zealand.
- 6. Bagheri A., Jin J., 2019. Photopolymerization in 3D printing. ACS Appl. Polym. Mater., 1, 593–611. DOI: 10.1021/acsapm.8b00165.
- 7. Chen X., Liu X., Childs P., Brandon N., Wu B., 2017. A low cost desktop electrochemical metal 3D printer. Adv. Mater. Technol., 2, 1700148. DOI: 10.1002/admt.201700148. de Oliveira D.C.R.S., Rocha M.G., Correa I.C., Correr A.B.,
- 8. Ferracane J.L., Sinhoreti M.A.C., 2016. The effect of combining photoinitiator systems on the color and curing profile of resin-based composites. Dent. Mater., 32, 1209–1217. DOI: 10.1016/j.dental.2016.06.010.
- 9. Duty C., Ajinjeru C., Kishore V., Compton B., Hmeidat N., Chen X., Liu P., Hassen A.A., Lindahl J., Kunc V., 2018. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J. Manuf. Processes, 35, 526–537. DOI: 10.1016/j.jmapro.2018.08.008.
- 10. Gibson I., Rosen D.W., Stucker B., 2010. Additive manufacturing technologies. Rapid prototyping to direct digital manufacturing. Springer New York, NY. DOI: 10.1007/978-1-4419-1120-9.
- 11. He H., Li L., Lee L.J., 2006. Photopolymerization and structure formation of methacrylic acid based hydrogels in water/ethanol mixture. Polymer, 47, 1612–1619. DOI: 10.1016/j.polymer.2006.01.014.
- 12. Huang B., Zhou Y., Wei L., Hu R., Zhang X., Coates P., Sefat F., Zhang W., Lu C., 2022. Visible light 3D printing of high-resolution superelastic microlattices of poly(ethylene glycol) diacrylate/graphene oxide nanocomposites via continuous liquid interface production. Ind. Eng. Chem. Res., 61, 13052–13062. DOI: 10.1021/acs.iecr.2c01696.
- 13. Jandyal A., Chaturvedi I., Wazir I., Raina A., Haq M.I.U., 2022. 3D printing – a review of processes, materials and applications in industry 4.0. Sustainable Oper. Comput., 3, 33–42. DOI: 10.1016/j.susoc.2021.09.004.
- 14. Kamińska I., Ortyl J., Popielarz R., 2015. Applicability of quinolizino-coumarins for monitoring free radical photopolymerization by fluorescence spectroscopy. Polym. Test., 42, 99–107. DOI: 10.1016/j.polymertesting.2014.12.013.
- 15. Kamińska I., Ortyl J., Popielarz R., 2016. Mechanism of interaction of coumarin-based fluorescent molecular probes with polymerizing medium during free radical polymerization of a monomer. Polym. Test., 55, 310–317. DOI: 10.1016/j.polymertesting.2016.09.013.
- 16. Khadilkar A., Wang J., Rai R., 2019. Deep learning–based stress prediction for bottom-up SLA 3D printing process. Int. J. Adv. Manuf. Technol., 102, 2555–2569. DOI: 10.1007/s00170-019-03363-4.
- 17. Kojima K., Ito M., Morishita H., Hayashi N., 1998. A novel water-soluble photoinitiator for the acrylic photopolymerization type resist system. Chem. Mater., 10, 3429–3433. DOI: 10.1021/cm9801688.
- 18. Korniejenko K., Gądek S., Dynowski P., Tran D.H., Rudziewicz M., Pose S., Grab T., 2024. Additive manufacturing in underwater applications. Appl. Sci., 14, 1346. DOI: 10.3390/app14041346.
- 19. Kowsari K., Zhang B., Panjwani S., Chen Z., Hingorani H., Akbari S., Fang N.X., Ge Q., 2018. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf., 24, 627–638. DOI: 10.1016/j.addma.2018.10.037.
- 20. Lee J.-Y., An J., Chua C.K., 2017. Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today, 7, 120– 133. DOI: 10.1016/j.apmt.2017.02.004.
- 21. Leprince J.G., Hadis M., Shortall A.C., Ferracane J.L., De-vaux J., Leloup G., Palin W.M., 2011. Photoinitiator type and applicability of exposure reciprocity law in filled and un- filled photoactive resins. Dent. Mater., 27, 157–164. DOI: 10.1016/j.dental.2010.09.011.
- 22. Meenakshisundaram V., Feller K., Chartrain N., Long T., Williams C., 2024. Characterizing photopolymer resins for high-temperature vat photopolymerization. Prog. Addit. Manuf., 9, 2061–2071. DOI: 10.1007/s40964-023-00562-0.
- 23. Neidinger P., Davis J., Voll D., Jaatinen E.A., Walden S.L., Unterreiner A.N., Barner-Kowollik C., 2022. Near infrared light induced radical polymerization in water. Angew. Chem. Int. Ed., 61, e202209177. DOI: 10.1002/anie.202209177.
- 24. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D., 2018. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites, Part B: Eng., 143, 172–196. DOI: 10.1016/j.compositesb.2018.02.012.
- 25. Olsen T.L., Tomlin B., 2019. Industry 4.0: opportunities and challenges for operations management. Manuf. Serv. Oper. Manage., 22, 113–122. DOI: 10.1287/msom.2019.0796.
- 26. Ortyl J., Galek M., Milart P., Popielarz R., 2012. Aminoph- thalimide probes for monitoring of cationic photopolymerization by fluorescence probe technology and their effect on the polymerization kinetics. Polym. Test., 31, 466–473. DOI: 10.1016/j.polymertesting.2012.01.008.
- 27. Pagac M., Hajnys J., Ma Q.-P., Jancar L., Jansa J., Stefek P., Mesicek J., 2021. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing. Polymers, 13, 598. DOI: 10.3390/polym13040598.
- 28. Peruzzini M., Grandi F., Pellicciari M., 2020. Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng., 139, 105600. DOI: 10.1016/j.cie.2018.12.047.
- 29. Praveena B.A., Lokesh N., Abdulrajak B., Santhosh N., Praveena B.L., Vignesh R., 2022. A comprehensive review of emerging additive manufacturing (3D printing technology): methods, materials, applications, challenges, trends and future potential. Mater. Today, 52, 1309–1313. DOI: 10.1016/j.matpr.2021.11.059.
- 30. Quan H., Zhang T., Xu H., Luo S., Nie J., Zhu X., 2020. Photocuring 3D printing technique and its challenges. Bioact. Mater., 5, 110–115. DOI: 10.1016/j.bioactmat.2019.12.003.
- 31. Randhawa A., Dutta S.D., Ganguly K., Patel D.K., Patil T.V., Lim K.-T., 2023. Recent advances in 3D printing of photocurable polymers: types, mechanism, and tissue engineering application. Macromol. Biosci., 23, 2200278. DOI: 10.1002/mabi.202200278.
- 32. Rau D.A., Forgiarini M., Williams C.B., 2021. Hybridizing Direct Ink Write and mask-projection Vat Photopolymerization to enable additive manufacturing of high viscosity photopolymer resins. Addit. Manuf., 42, 101996. DOI: 10.1016/ j.addma.2021.101996.
- 33. Sawicz-Kryniger K., Niezgoda P., Stalmach P., Starzak K., Wysocka A., Świergosz T., Popielarz R., 2022. Performance of FPT, FTIR and DSC methods in cure monitoring of epoxy resins. Eur. Polym. J., 162, 110933. DOI: 10.1016/j.eurpolymj.2021.110933.
- 34. Shahrubudin N., Lee T.C., Ramlan R., 2019. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf., 35, 1286–1296. DOI: 10.1016/j.promfg.2019.06.089.
- 35. Simič R., Mandal J., Zhang K., Spencer N.D., 2021. Oxygen inhibition of free-radical polymerization is the dominant mecha- nism behind the “mold effect” on hydrogels. Soft Matter, 17, 6394–6403. DOI: 10.1039/D1SM00395J.
- 36. Szymaszek P., Tomal W., Świergosz T., Kamińska-Borek I., Popielarz R., Ortyl J., 2023. Review of quantitative and qualitative methods for monitoring photopolymerization reactions. Polym. Chem., 14, 1690–1717. DOI: 10.1039/d2py01538b.
- 37. Topa-Skwarczyńska M., Świeży A., Krok D., Starzak K., Niezgoda P., Oksiuta B., Wałczyk W., Ortyl J., 2022. Novel formulations containing fluorescent sensors to improve the resolution of 3D prints. Int. J. Mol. Sci., 23, 10470. DOI: 10.3390/ijms231810470.
- 38. Yakout M., Elbestawi M.A., Veldhuis S.C., 2018. A review of metal additive manufacturing technologies. Solid State Phenom., 278, 1–14. DOI: 10.4028/www.scientific.net/SSP.278.1.
- 39. Yang L., Hsu K., Baughman B., Godfrey D., Medina F., Menon M., Wiener S., 2017. Electron beam technology. In: Additive manufacturing of metals: The technology, materials, design and production. Springer Series in Advanced Manufacturing. Springer, Cham., 63–79. DOI: 10.1007/978-3-319-55128-9_4.
- 40. Zheng S., Zlatin M., Selvaganapathy P.R., Brook M.A., 2018. Multiple modulus silicone elastomers using 3D extrusion printing of low viscosity inks. Addit. Manuf., 24, 86–92. DOI: 10.1016/j.addma.2018.09.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79fe1b27-3dd1-49d0-880b-e3e6eea9ed09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.