PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicting mechanical strength and optimized parameters in FDM-printed polylactic acid parts via artificial neural networks and desirability analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fused deposition modeling (FDM) is a commonly used additive manufacturing (AM) technique in both domestic and industrial end-product fabrications. It produces prototypes and parts with complex geometric designs, which has the major benefits of eliminating the need for expensive tooling and flexibility. However, the produced parts often face poor part strength due to anisotropic fabrication strategies. The printing procedure, the kind of material utilized, and the printing parameters all have a significant impact on the mechanical characteristics of the printed item. In order to predict the mechanical properties related to printed components made with the use of FDM and Polylactic Acid (PLA) material, this study concentrates on developing a prediction model utilizing Artificial Neural Networks (ANNs). This study used the Taguchi design of experiments technique, utilizing (L25) orthogonal array as well as a Neural Network (NN) method with two layers and 15 neurons. The effect of FDM parameters (layer thickness (mm), percentage of infill density, number of top/bottom layers, shell thickness (mm), and infill overlap percentage) on ultimate tensile and compressive strength (UTS and UCS) was examined through analysis of variance (ANOVA). With an ANOVA result of 67.183% and 40.198%, respectively, infill density percentage was found to be the most significant factor influencing UCS and UTS dependent on other parameters. The predicted results demonstrated valuable agreement with experimental values, with mean squared errors of (0.098) and (0.326) for UTS and UCS, respectively. The predictive model produces flexibility in selecting the optimal setting based on applications.
Słowa kluczowe
EN
Wydawca
Rocznik
Tom
Strony
428--437
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • University of Technology Production Engineering and Metallurgy Department Baghdad, Iraq
  • University of Technology Production Engineering and Metallurgy Department Baghdad, Iraq
  • University of Technology Production Engineering and Metallurgy Department Baghdad, Iraq
Bibliografia
  • [1] S. Fafenrot, N. Grimmelsmann, M. Wortmann, and A. Ehrmann, “Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling,” Materials, vol. 10, 2017, pp. 1199. https://doi.org/10.3390/ma10101199.
  • [2] S. M. Ahmad and S. Y. Ezdeen, “Effect of coating on the specific properties and damping loss parameter of ultem 1010,” Zanco J. Pure Appl, Sci., vol. 33, 2021, pp. 105-116. https://doi.org/10.21271/ZJPAS.33.2.10.
  • [3] T. Abbas, F. M. Othman, and H. B. Ali, “Effect of infill Parameter on compression property in FDM Process,” Dimensions, vol. 12, 2017, pp. 24-25. https://doi.org/10.9790/9622-0710021619.
  • [4] F. A. Naser and M. T. Rashid, “The Influence of Concave Pectoral Fin Morphology in the Performance of Labriform Swimming Robot,” Iraqi J. Electr. Electron. Eng., vol. 16, 2020, pp. 54-61. https://doi.org/10.37917/ijeee.16.1.7.
  • [5] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, “Improving dimensional accuracy of fused deposition modeling processed part using grey Taguchi method,” Mater Des, vol. 30, no. 10, 2009, pp. 4243-4252. https://doi.org/10.1016/j.matdes.2009.04.030.
  • [6] K. Kun, “Reconstruction and development of a 3D printer using FDM technology,” Procedia Engineering, vol. 149, 2016, pp. 203-211. https://doi.org/10.1016/j.proeng.2016.06.657.
  • [7] N.A. Aldeen, B.A. Sadkhan, and B. Owaid, “Hand bone orthosis manufacturing using 3d printing technology,” J. Eng. Sustain. Dev., vol. 24, 2020, pp. 451-458. https://doi.org/10.31272/jeasd.conf.1.50.
  • [8] Y.F. Buys, A.N.A. Aznan, and H. Anuar, “Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid/natural rubber blends,” in IOP Conference Series: Materials Science and Engineering, vol. 290, 2018, p. 012077. https://doi.org/10.1088/1757-899X/290/1/012077.
  • [9] M. Rismalia, S.C. Hidajat, I.G.R. Permana, B. Hadisujoto, M. Muslimin, and F. Triawan, “Infill pattern and density effects on the tensile properties of 3D printed PLA material,” in Journal of Physics: Conference Series, vol. 1402, 2019, p. 44041. https://doi.org/10.1088/1742-6596/1402/4/044041.
  • [10] T. Raj. “Investigation of Parameter-Property Relationship in Material Extrusion Additive Manufacturing.” PhD thesis, Department of Mechanical Engineering, Faculty of Engineering Dayalbagh Educational Institute, Dayalbagh, Agra (UP) – 282005, 2023.
  • [11] B. Das, S. Roy, R.N. Rai, and S.C. Saha, “Studies on effect of cutting parameters on surface roughness of Al- Cu-Tic Mmcs: An Artificial Neural Network Approach,” International Conference on Advanced Computing Technologies and Applications, 2015, pp. 745-752. http://doi.org/10.1016/j.procs.2015.03.145.
  • [12] N. Hopkinson, R. Hague, and P. Dickens. Rapid Manufacturing: An Industrial Revolution for the Digital Age. Wiley, England, 2005.
  • [13] A. Pilipović, P. Raos, and M. Šercer, “Experimental analysis of properties of materials for rapid prototyping,” The International Journal of Advanced Manufacturing Technology, vol. 40, 2009, pp. 105-115. https://doi.org/10.1007/s00170-007-1310-7.
  • [14] J. Borah and M. Chandrasekaran, “Experimental investigation and development of Artificial neural network modeling of 3D printed PEEK bio implants and its optimization,” Research Square, 2023. https://doi.org/10.21203/rs.3.rs-3204960/v1.
  • [15] S. Sivarao et al., “Predictive Modeling Of Dimensional Accuracies In 3d Printing Using Artificial Neural Network,” Journal of Engineering Science and Technology, vol. 18, no. 4, 2023, pp. 2148-2160.
  • [16] S. Chinchanikar et al., “ANN modelling of surface roughness of FDM parts considering the effect of hidden layers, neurons, and process parameters,” Advances in Materials and Processing Technologies, 2022. https://doi.org/10.1080/2374068X.2022.2091085.
  • [17] F.M. Monticeli, R.M. Neves, H.L. Ornaghi Jr., and J.H.S. Almeida Jr., “Prediction of Bending Properties for 3D-Printed Carbon Fibre/Epoxy Composites with Several Processing Parameters Using ANN and Statistical Methods,” Polymers, vol. 14, 2022, p. 3668. https://doi.org/10.3390/polym14173668.
  • [18] I. Milićević et al., “Improving the Mechanical Characteristics of the 3D Printing Objects using Hybrid Machine Learning Approach,” FACTA UNIVERSITATIS Series: Mechanical Engineering, 2022. https://doi.org/10.22190/FUME220429036M.
  • [19] A.K. Gupta and M. Taufik, “Improvement of part strength prediction modelling by artificial neural networks for filament and pellet based additively manufactured parts,” Australian Journal of Mechanical Engineering, 2022. https://doi.org/10.1080/14484846.2022.2047472.
  • [20] M. Abas, T. Habib, S. Noor, B. Salah, and D. Zimon, “Parametric Investigation and Optimization to Study the Effect of Process Parameters on the Dimensional Deviation of Fused Deposition Modeling of 3D Printed Parts,” Polymers, vol. 14, 2022. https://doi.org/10.3390/polym14173667.
  • [21] A.D. Tura, H.B. Mamo, Y.D. Jelila, and H.G. Lemu, “Experimental investigation and ANN prediction for part quality improvement of fused deposition modeling parts,” COTech & OGTech 2021, IOP Conf. Series: Materials Science and Engineering, vol. 1201, 2021, p. 012031. https://doi.org/10.1088/1757-899X/1201/1/012031.
  • [22] A. Dey and N. Yodo, “A systematic survey of FDM process parameter optimization and their influence on part characteristics,” J. Manuf. Mater. Process., vol. 3, no. 3, 2019, p. 64. https://doi.org/10.3390/jmmp3030064.
  • [23] S.K. Padhi et al., “Optimization of fused deposition modeling process parameters using a fuzzy inference system coupled with Taguchi philosophy,” Adv. Manuf., vol. 5, 2017, pp. 231-242. https://doi.org/10.1007/s40436-017-0187-4.
  • [24] V. Kumar and A. Kumar, “Improved bio bleaching of mixed hardwood pulp and process optimization using novel GA-ANN and GA-ANFIS hybrid statistical tools,” Bioresour. Technol., vol. 271, 2018, pp. 274-282. https://doi.org/10.1016/j.biortech.2018.09.115.
  • [25] J.P. Patel, C.P. Patel, U.J. Patel, “A review on various approaches for process parameter optimization of fused deposition modeling (FDM) process and Taguchi approach for optimization,” International Journal Engineering Research and Application, vol. 2, no. 2, 2012, pp. 361-5.
  • [26] J.M. Mercado-Colmenero et al., “A numerical and experimental study of the compression uniaxial properties of PLA manufactured with FDM technology based on product specifications,” Int J Adv Manuf Technol, vol. 103, pp. 1893-1909, 2019. https://doi.org/10.1007/s00170-019-03626-0.
  • [27] H.H. Abdulridha, T.F. Abbas, “Analysis and Investigation the Effect of the Printing Parameters on the Mechanical and Physical Properties of PLA Parts Fabricated via FDM Printing,” Advances in Science and Technology Research Journal, vol. 17, no. 6, 2023, pp. 49-62. https://doi.org/10.12913/22998624/173562.
  • [28] S.A. Oudah, H.B. Al-Attraqchi, N.A. Nassir, “The Effect of Process Parameters on the Compression Property of Acrylonitrile Butadiene Styrene Produced by 3D Printer,” J. Eng. Technol., vol. 40, 2022, pp. 189-194. http://doi.org/10.30684/etj.v40i1.2118.
  • [29] J.M. Zurada. Introduction to Artificial Neural Systems. St. Paul: West Publishing Company, 1992, pp. 1-764.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79fb9a39-2e23-48b0-b7f2-2c739f694a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.