PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Material State on Austenitic Transformation in HSLA-Type Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the influence of the material condition – HSLA steel with Ti and Nb microadditions – on the course of the austenitic transformation. In order to determine the kinetics of phase transformations occur in steel during individual stages of the austenitic transformation, tests were carried out using a Bähr 805 A/D dilatometer. In order to determine the influence of hot plastic deformation on the course of the austenitic transformation, plastometric tests were carried out using the Gleeble 3800 thermomechanical simulator. For detailed microstructural analysis, microscopic examinations were carried out using the light microscope and the scanning electron microscope. The obtained results were compared with hardness measurements. The tests carried out showed significant differences in the course of the austenitic transformation and the values of critical temperatures for steel before and after using the plastic deformation. The Ac1 temperature for steel in the as-cast state is 850°C and the Ac3 temperature is 950°C. As the annealing temperature increases, the hardness increases from 210 HV100 for a temperature of 700°C to 260 HV100 for a temperature of 920°C. Knowledge about the phase transformations of supercooled austenite is extremely important, especially for newly developed steels, hence the aim of the work is to analyze the atypical course of the austenitic transformation of HSLA steels and to determine the influence of deformation on the austenitic transformation during heating.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18A, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, Materials Research Laboratory, ul. Konarskiego 18A, 44-100 Gliwice, Poland
autor
  • Faculty of Mechanical Engineering, Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18A, 44-100 Gliwice, Poland
Bibliografia
  • 1. Zhang Y., Li X., Liu Y., Liu C., Dong J., Yu L., Li H. Study of the kinetics of austenite grain growth by dynamic Ti-rich and Nb-rich carbonitride dissolution in HSLA steel: In-situ observation and modelling. Materials Characterization 2020; 169(5): 110612. doi: 10.1016/j.matchar.2020.110612.
  • 2. Shao Y., Liu C., Yan Z., Li H., Liu Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: a review. Journal of Materials Science & Technology 2018; 34(5): 737–744. doi: 10.1016/j.jmst.2017.11.020.
  • 3. Opiela M., Grajcar A. Microstructure and anisotropy of plastic properties of thermomechanically-processed HSLA-type steel plates. Metals 2018; 8(5): 304. doi: 10.3390/met8050304.
  • 4. Dong J., Li C., Liu C., Huang Y., Yu L., Li H., Liu Y. Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel. Materials Science and Engineering: A 2017; 705: 249–256. doi: 10.1016/j.msea.2017.08.081.
  • 5. Jun H., Kang J., Seo D., Kang K., Park C. Effects of deformation and boron on microstructure and continuous cooling transformation in low carbon HSLA steels. Materials Science and Engineering: A 2006; 422(1): 157–162. doi: 10.1016/j.msea.2005.05.008.
  • 6. Zavdoveev A., Poznyakov V., Baudin T., Rogante M., Kim H.S., Heaton M., Demchenko Y., Zhukov V., Skoryk M. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies. Materials Today Communications 2021; 28: 102598. doi: 10.1016/j.mtcomm.2021.102598.
  • 7. Málek M., Mičian M., Moravec J. Determination of Phase Transformation Temperatures by Dilatometric Test of S960MC Steel. Archives of Foundry Engineering 2021; 21(2): 57-64. doi: 10.24425/afe.2021.136098.
  • 8. Mičian M., Winczek J., Harmaniak D., Koňár R., Gucwa M., Moravec J. Physical simulation of individual heat-affected zones in S960MC steel. Archives of Metallurgy and Materials 2021; 66(1): 81–89. doi: 10.24425/amm.2021.134762.
  • 9. Ye Z., Chen G., Wang W., Wang S., Yang J., Huang J. High-strength and high-toughness weld of S690QL HSLA steel via a high-speed high frequency electric cooperated arc welding without additional heating measures. Materials Science and Engineering: A 2023; 880: 145328. doi: 10.1016/j.msea.2023.145328.
  • 10. Winarto W., Anis M., Taufiqullah T. Cooling rate control on cold cracking in welded thick HSLA steel plate. Materials Science Forum 2011; 689: 269–275. doi: 10.4028/www.scientific.net/MSF.689.269.
  • 11. Wojtacha A., Opiela M. Numerical simulation of the phase transformations in steels: a case study on newly-developed multi-phase steels for drop orgings. Advances in Science and Technology Research Journal 2021; 15(1): 126–133. doi: 10.12913/22998624/130863.
  • 12. Morawiec M., Grajcar A., Zalecki W., GarciaMateo C., Opiela M. Dilatometric study of phase transformations in 5 Mn steel subjected to different heat treatments. Materials 2020; 13(4): 958. doi: 10.3390/ma13040958.
  • 13. Morawiec M., Wojtacha A., Opiela M. Kinetics of austenite phase transformations in newly-developed 0.17C-2Mn-1Si-0.2Mo forging steel with Ti and V microadditions. Materials 2021; 14(7): 1698. doi: 10.3390/ma14071698.
  • 14. Kawulok P., Podolínský P., Kajzar P., Schindler I., Kawulok R., Ševčák V., Opéla P. The influence of deformation and austenitization temperature on the kinetics of phase transformations during cooling of high-carbon steel. Archives of Metallurgy and Materials 2018; 63(4): 1743–1748. doi: 10.24425/amm.2018.125100.
  • 15. Jandová D., Meyer L., Mašek B., Nový Z., Kešner D., Motyčka P. The influence of thermo-mechanical processing on the microstructure of steel 20MoCrS4. Materials Science and Engineering: A 2003; 349(1–2): 36–47. doi: 10.1016/S0921-5093(02)00373-8.
  • 16. Yin S., Sun X., Liu Q., Zhang Z. Influence of Deformation on Transformation of LowCarbon and High Nb-Containing Steel During Continuous Cooling. Journal of Iron and Steel Research International 2010; 17(2): 43–47. doi:10.1016/S1006-706X(10)60057-X.
  • 17. Wang X., Wang Z., Wang X., Wang Y., Gao J., Zhao X, Effect of cooling rate and deformation on microstructures and critical phasetransformation temperature of boron-nickel added HSLA h-beams. Journal of Iron and Steel Research International 2021; 19(2): 62-66. doi: 10.1016/S1006-706X(12)60061-2.
  • 18. ASTM A1033-04, In Standard Practice for Quantitative Measurement and Reporting of Hypoeutectoid Carbon and Low-Alloy Steel Phase Transformations; ASTM International: West Conshohocken, PA, USA.
  • 19. Dong J., Liu C., Liu Y., Li C., Guo Q., Li H. Effects of two different types of MX carbonitrides on austenite growth behavior of Nb-V-Ti microalloyed ultra-high strength steel. Fusion Engineering and Design 2017; 125: 415–422. doi: 10.1016/J.FUSENGDES.2017.05.084.
  • 20. Li X., Liu Y., Gan K., Dong J., Liu C. Acquiring a low yield ratio well synchronized with enhanced strength of HSLA pipeline steels through adjusting multiple-phase microstructures. Materials Science and Engineering: A 2020; 785: 139350. doi: 10.1016/j.msea.2020.139350.
  • 21. Ramachandran D., Moon J., Lee C., Kim S., Chung J., Biro E., Park Y. Role of bainitic microstructures with M-A constituent on the toughness of an HSLA steel for seismic resistant structural applications. Materials Science and Engineering: A 2021; 801: 140390. doi: 10.1016/j.msea.2020.140390.
  • 22. Hou W., Liu Q., Gu J. Improved impact toughness by multi-step heat treatment in a 1400 MPa low carbon precipitation-strengthened steel. Materials Science and Engineering: A 2020; 797(1): 140077. doi: 10.1016/j.msea.2020.140077.
  • 23. Chun X., Sun Q., Chen X. Research on transformation mechanism and microstructure evolution rule of vanadium–nitrogen microalloyed steels. Materials & Design 2007; 28(9): 2523–2527. doi: 10.1016/j.matdes.2006.09.005.
  • 24. Chen X., Huang Y. Hot deformation behavior of HSLA steel Q690 and phase transformation during compression. Journal of Alloys and Compounds 2015; 619: 564-571. doi: 10.1016/j.jallcom.2014.09.074.
  • 25. Lu J., Yu H., Yang S. Mechanical behavior of multi-stage heat-treated HSLA steel based on examinations of microstructural evolution. Materials Science and Engineering: A 2021; 803: 140493. doi: 10.1016/j.msea.2020.140493.
  • 26. Li X., Shi L., Liu Y., Gan K., Liu C. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching. Materials Science and Engineering: A 2020; 772(4): 138683. doi: 10.1016/j.msea.2019.138683.
  • 27. Zavdoveev A., Poznyakov V., Baudin T., Rogante M., Kim H.S., Heaton M., Demchenko Y., Zhukov V., Skoryk M. Effect of heat treatment on the mechanical properties and microstructure of HSLA steels processed by various technologies, Materials Today Communications 2021; 28: 102598. doi:10.1016/j.mtcomm.2021.102598.
  • 28. Málek M., Mičian M., Moravec J. Determination of phase transformation temperatures by dilatometric test of S960MC steel. Archives of Foundry Engineering 2021; 21: 57-64. doi:10.24425/afe.2021.136098.
  • 29. Mičian M., Winczek J., Harmaniak D., Koňár R., Gucwa M., Moravec J. Physical simulation of individual heat-affected zones in S960MC steel. Archives of Metallurgy and Materials 2021; 66: 81-89. doi:10.24425/amm.2021.134762.
  • 30. Du L., Liu X., Wang G. The quenching problem in the study of strain induced transformation of low carbon steel. Acta Metallurgica Sinica 2002; 38(2): 196–202.
  • 31. Zhou X., Chen Y., Jiang Y., Li Y. Effects of plastic deformation on austenite transformation in Fe-1.93Mn-0.07Ni-1.96Cr-0.35Mo ultra-high strength steel during continuous cooling. Materials Research Express 2023; 6: 1–10. doi: 10.1088/2053-1591/ab6e7c.
  • 32. Navarro-Lopez A., Sietsma J., Santofimia M.J.: Effect of prior a thermal martensite on the iso-thermal transformation kinetic below Ms in a low-C high-Si steel. Metallurgical and Materials Transactions A 2016; 47(3): 1028–1039. doi: 10.1007/s11661-015-3285-6.
  • 33. Oliveira B., Oliveira M., Terrones L., M. Giardinieri, Godefroid L. Microstructure and mechanical properties of as-cast and annealed high strength low alloy steel. Journal of Materials Science Research 2019; 8(4): 1–13. doi: 10.5539/jmsr.v8n4p1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79f58672-7a58-4d58-93f1-e49d2c8964fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.