PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Infrared thermal imaging, using cooled and uncooled detectors, is continuously gaining attention because of its wide military and civilian applications. Futuristic requirements of high temperature operation, multispectral imaging, lower cost, higher resolution (using pixels) etc. are driving continuous developments in the field. Although there are good reviews in the literature by Rogalski [1–4], Martyniuk et al. [5] and Rogalski et al. [6] on various types of infrared detectors and technologies, this paper focuses on some of the important recent trends and diverse applications in this field and discusses some important fundamentals of these detectors.
Rocznik
Strony
174--193
Opis fizyczny
Bibliogr. 64 poz., wykr., fot., rys.
Twórcy
autor
  • Institute of Defence Scientists and Technologists, CFEES Campus, Brig SK Mazumdar Road, Timarpur, Delhi, 110054, India
autor
  • Institute of Defence Scientists and Technologists, CFEES Campus, Brig SK Mazumdar Road, Timarpur, Delhi, 110054, India
Bibliografia
  • [1] A. Rogalski, New material system for third generation infrared photodetectors, Opto-Electron. Rev. 16 (4) (2008) 458–482, http://dx.doi.org/10.2478/s11772-008-0047-7.
  • [2] A. Rogalski, J. Antoszewski, L. Faraone, Third-generation infrared photodetector arrays, J. Appl. Phys. 105 (091101) (2009) 1–44, http://dx.doi.org/10.1063/1.3099572.
  • [3] A. Rogalski, Recent progress in infrared detector technologies, Infrared Phys.Technol. 54 (2011) 136–154, http://dx.doi.org/10.1016/j.infrared.2010.12.003.
  • [4] A. Rogalski, History of infrared detectors, Opto-Electron. Rev. 20 (3) (2012)279–308, http://dx.doi.org/10.2478/s11772−012−0037−7.
  • [5] P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs, Appl. Phys. Rev. 1 (041102) (2014) 1–35, http://dx.doi.org/10.1063/1.4896193.
  • [6] A. Rogalski, P. Martyniuk, M. Kopytko, Challenges of small-pixel infrared detectors: a review, Rep. Prog. Phys. 79 (046501) (2016) 1–42, http://dx.doi. org/10.1088/0034-4885/79/4/046501.
  • [7] L. Kubiak, P. Madejczyk, J. Wenus, W. Gawron, K. Jozwikowski, J. Rutkowski, A. Rogalski, Status of HgCdTe photodiodes at the military university of technology, Opto-Electron. Rev. 11 (3) (2003) 211–226.
  • [8] P. Martyniuk, A. Rogalski, HOT infrared photodetectors, Opto-Electron. Rev. 21 (2) (2013) 239–257, http://dx.doi.org/10.2478/s11772−013−0090−x.
  • [9] P. Martyniuk, M. Kopytko, A. Rogalski, Barrier infrared detectors, Opto-Electron. Rev. 22 (2) (2014) 127–146, http://dx.doi.org/10.2478/ s11772−014−0187−x.
  • [10] P. Martyniuk, A. Rogalski, MWIR barrier detectors versus HgCdTe photodiodes, Infrared Phys. Technol. 70 (2015) 125–128, http://dx.doi.org/10. 1016/j.infrared.2014.09.026.
  • [11] W. Pusz, A. Kowalewski, P. Martyniuk, W. Gawron, E. Plis, S. Krishna, A. Rogalski, Mid-wavelength infrared type-II InAs/GaSb superlattice interband cascade photodetectors, Opt. Eng. 53 (4) (2014), 043107, http://dx.doi.org/10.1117/1.OE.53.4.043107 (1-8).
  • [12] A. Rogalski, Competitive technologies for third generation infrared photon detectors, Proc. SPIE. Infrared Technol. Appl. XXXI 6206 (1-15) (2006), 62060S, http://dx.doi.org/10.1117/12.666882.
  • [13] Philippe M. Tribolet, Philippe Chorier, Alain Manissadjian, Patricia Costa, Jean-Pierre Chatard, High-performance infrared detectors at sofradir, Proc. SPIE Infrared Detect. Focal Plane Arrays VI 4028 (2000) 438–456, http://dx. doi.org/10.1117/12.391759.
  • [14] A. Rogalski, Comparison of the performance of quantum well and conventional bulk infrared photodetectors, Infrared Phys. Technol. 38 (1997) 295–310, http://dx.doi.org/10.1016/S1350-4495(97)00015-7.
  • [15] A. Rogalski, HgCdTe infrared detector material: history, status and outlook, Rep. Prog. Phys. 68 (2005) 2267–2336, http://dx.doi.org/10.1088/0034-4885/ 68/10/R01.
  • [16] R. Ciupa, A. Rogalski, Performance limitations of photon and thermal infrared detectors, Opto-Electron. Rev. 5 (1997) 257–266.
  • [17] http://www.globalsecurity.org/space/library/report/1998/sbirs-brochure/ part02.htm.
  • [18] M.A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington, USA, 2014.
  • [19] G. Destéfanis, P. Tribolet, M. Vuillermet, D.B. Lanfrey, MCT IR detectors in France, Proc. SPIE. Infrared Technol. Appl. XXXVII 8012 (1-12) (2011) 801235, http://dx.doi.org/10.1117/12.886904.
  • [20] A. Hoffman, Semiconductor processing technology improves resolution of infrared arrays, Laser Focus World 42 (2) (2006) 81–84 https://www. laserfocusworld.com/articles/print/volume-42/issue-2/features/ir-detectorssemiconductor-processing-technology-improves-resolution-of-infraredarrays.html.
  • [21] C. Li, G. Skidmore, C. Howard, E. Clarke, C.J. Han, Advancement in 17-micron pixel pitch uncooled focal plane arrays, Proc. SPIE Infrared Technol. Appl. XXXV 7298 (1-11) (2009) 72980S, http://dx.doi.org/10.1117/12.818189.
  • [22] http://www.sofradir.com/technology/mct/.
  • [23] http://www.nitevis.com/ANPAS-13E.htm.
  • [24] https://www.armyrecognition.com/april 2016 global defense security news industry/us army awards raytheon and drs $56 million to develop nextgen infrared night vision 50504163.html.
  • [25] A. Rogalski, Next decade in infrared detectors, Proc. SPIE Electro-Opt. Infrared Syst. Technol. Appl. XIV 10433 (1-25) (2017), 104330L, http://dx.doi.org/10. 1117/12.2300779.
  • [26] J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, K. Jeppson, Case for small pixels: system perspective and FPA challenge, image sensing technologies: materials devices systems and applications, Proc. SPIE 9100 (1-9) (2014) 91000I, http://dx.doi.org/10.1117/12.2054452.
  • [27] G.C. Holst, Imaging system performance based upon F/d, Opt. Eng. 46 (10) (2007) 103204, http://dx.doi.org/10.1117/1.2790066 (1-8).
  • [28] M.A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, Washington, USA, 2014, pp. 24–29.
  • [29] G.C. Holst, R.G. Driggers, Small detectors in infrared system design, Opt. Eng. 51 (9) (2012) 096401, http://dx.doi.org/10.1117/1.OE.51.9.096401 (1-10).
  • [30] M. Vallone, M. Goano, F. Bertazzi, G. Ghione, W. Schirmacher, S. Hanna, H. Figgemeie, Simulation of small-pitch HgCdTe photodetectors, J. Electron. Mater. 46 (9) (2017) 5458–5470, http://dx.doi.org/10.1007/s11664-017-5378-z.
  • [31] A. Adams, E. Rittenberg, HOT IR sensors improve IR camera size, weight, and power, Laser Focus World 50 (1) (2014) https://www.laserfocusworld.com/ articles/print/volume-50/issue-01/features/advances-in-detectors-hot-irsensors-improve-ir-camera-size-weight-and-power.html.
  • [32] D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, W.E. Tennant, High-operating temperature HgCdTe: a vision for the near future, J. Electron. Mater. 45 (2016) 4587–4595, http://dx. doi.org/10.1007/s11664-016-4566-6.
  • [33] M. Noda, Uncooled thermal infrared sensors: recent Status in microbolometers and their sensing materials, Sensor Lett. 3 (3) (2005) 194–205, http://dx.doi.org/10.1166/sl.2005.038.
  • [34] P.R. Norton, Infrared detectors in the next millennium, Proc. SPIE Infrared Technol. Appl. XXV 3698 (1999) 652–665, http://dx.doi.org/10.1117/12. 354568.
  • [35] P. Herve, J. Cedelle, I. Negreanu, Infrared technique for simultaneous determination of temperature and emissivity, Infrared Phys. Technol. 55 (1) (2012) 1–10, http://dx.doi.org/10.1016/j.infrared.2010.09.001.
  • [36] S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, S.B. Rafol, J.M. Mumolo, D.Z. Ting, J.J. Bock, M.E. Ressler, M.W. Werner, P.D. LeVan, R. Chehayeb, C.A. Kukkonen, M. Ley, P. LeVan, M.A. Fauci, Recent developments and applications of quantum well infrared photodetector focal plane arrays, in: J. Rutkowski, J. Wenus, L. Kubiak (Eds.), Proc. SPIE Intl. Conference on Solid State Crystals 2000: Epilayers and Heterostructures in Optoelectronics and Semiconductor Technology 4413 (2001) 323–338, http://dx.doi.org/10.1117/12.425451.
  • [37] S.D. Gunapala, S.V. Bandara, A. Singh, J.K. Liu, S.B. Rafol, E.M. Luong, J.M. Mumolo, N.Q. Tran, D.Z.-Y. Ting, J.D. Vincent, C.A. Shott, J. Long, P.D. LeVan, 640/spl times/486 long-wavelength two-color GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera, IEEE T. Electron Dev. 47 (5) (2000) 963–971, http://dx.doi.org/10.1109/16.841227.
  • [38] S.D. Gunapala, S.V. Bandara, C.J. Hill, D.Z. Ting, J.K. Liu, Sir B. Rafol, E.R. Blazejewski, J.M. Mumolo, S.A. Keo, S. Krishna, Y.-C. Chang, C.A. Shott, 640 512 pixels Long-wavelength infrared (LWIR) quantum-dot infrared photodetector (QDIP) imaging focal plane array, IEEE J. Quant. Elect. 43 (3) (2007) 230–237, http://dx.doi.org/10.1109/JQE.2006.889645.
  • [39] W.J. Gunning, J. DeNatale, P. Stupar, R. Borwick, S. Lauxterman, P. Kobrin, J. Auyeung, Dual band adaptive focal plane array: an example of the challenge and potential of intelligent integrated microsystems, Proc. SPIE Intell. Integr. Microsyst. 6232 (1-9) (2006) 62320F, http://dx.doi.org/10.1117/12.669724.
  • [40] S. Krishna, J. S. Tyo, M. M. Hayat, S. Raghavan, U. Sakoglu, Detector with tunable spectral response, United States Patent, Patent No. US 7,217,951 B2, May15 2007.
  • [41] S. Kavusi, A. El Gamal, Quantitative study of High dynamic range image sensor architectures, SPIE 5301 (2004) 264–275, http://dx.doi.org/10.1117/12. 544517.
  • [42] S. Kavusi, A. El Gamal, Folded multiple capture: an architecture for high dynamic range disturbance-tolerant focal plane array, in: Bjørn F. Andresen, Gabor F. Fulop (Eds.), Proc. of SPIE Infrared Technology and Applications XXX 5406 (2004) 351–360, http://dx.doi.org/10.1117/12.543543 (2204).
  • [43] C.J. Alicandro, Sensors Expand IR imaging Range, 2019 https://www.visionsystems.com/articles/print/volume-10/issue-6/features/componentintegration/sensors-expand-ir-imaging-range.html.
  • [44] https://www.vision-systems.com/articles/print/volume-13/issue-8/features/ product-focus/word-on-the-wire.html.
  • [45] M.A. Massie, J.T. Woolaway, J.P. Curzan, P.L. McCarley, Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering, Visual Inf. Process. II Proc. SPIE 1961 (1993) 160–174, http://dx.doi.org/10.1117/12.150947.
  • [46] M.A. Massie, J.P. Curzan, P.L. McCarley, N.I. Rummelt, Imaging applications of large-format variable acuity super pixel imagers, Infrared Technol. Appl. XXXII Proc. SPIE 6206 (1-12) (2006) 62060Z, http://dx.doi.org/10.1117/12.668508.
  • [47] http://telops.com/media/documents/ Telops%20General%20Brochure%202016 low res.pdf.
  • [48] F. Christnacher, S. Schertzer, N. Metzger, E. Bacher, M. Laurenzis, R. Habermacher, Influence of gating and of the gate shape on the penetration capacity of range-gated active imaging in scattering environments, Opt. Express 23 (26) (2015), http://dx.doi.org/10.1364/OE.23.032897, 32987-32908.
  • [49] http://koziy.thelinebreaker.co/compound-eyes/http://koziy.thelinebreaker. co/compound-eyes/flies-compound-eyes-arthropod-eyes-are-calledcompound-eye-flickr.html.
  • [50] https://patents.google.com/patent/US7786421.
  • [51] K. Tekaya, M. Fendler, D. Dumas, K. Inal, E. Massoni, Y. Gaeremynck, G. Druart, D. Henry, Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras, Infrared Technol. Appl. XL Proc. SPIE 9070 (1-8) (2014) 90702T, http://dx.doi.org/10.1117/12.2049967.
  • [52] https://www.slideshare.net/hindujudaic/space-based-infrared-systemsbirsusa-one-of-the-nations-highest-priority-space-programs.
  • [53] L. Zhenga, M.Z. Tidrowb, A. Novellob, H. Weichelc, S. Vohrad, Type II strained layer superlattice: a potential infrared sensor material for space, Proc. of SPIE 6900 (1-10) (2008), 69000F, http://dx.doi.org/10.1117/12.768420.
  • [54] D.L. Clements, Infrared Astronomy – Seeing the Heat: from William Herschel to the Herschel Space Observatory, CRC Press, Taylor and Francis Group, Florida, USA, 2015, pp. 93, ch. 4.5.
  • [55] J.L. Miller, Principles of Infrared Technology: A Practical Guide to the State of the Art, Van Nostrand Reinhold, New York, 1994, pp. 2012, ch 6.6.
  • [56] M.S. Sarfraz, R. Stiefehagen, Deep Perceptual Mapping for Thermal to Visible Face Recognition, 1507, Cornell University Library, arXiv, 2015, pp. 02879 https://arxiv.org/pdf/1507.02879.pdf.
  • [57] A. Seal, S. Ganguly, D. Bhattacharjee, M. Nasipuri, D.K. Basu, Automated Thermal Face Recognition Based on Minutiae Extraction, 2019 https://arxiv. org/abs/1309.1000.
  • [58] L. Warmelink, A. Vrij, S. Mann, S. Leal, D. Forrester, R.P. Fisher, Thermal imaging as a lie detection tool at airports, Law Human Behav. 35 (1) (2011) 40–48, http://dx.doi.org/10.1007/s10979-010-9251-3.
  • [59] Y. Karni, M. Nitzani, E. Jacobsohn, I. Grimberg, S. Gliksman, A. Giladi, L. Krasovitski, E. Avnon, I. Hirsh, L. Bikov, I. Lukomsky, L. Shkedy, R. Fraenkel, I. Shtrichman, P. Gonzalez, A. Lambrechts, Spatial and spectral filtering on focal plane arrays, infrared technology and applications XLIV, Proc. SPIE 10624 (1-10) (2018), 106241H, http://dx.doi.org/10.1117/12.2299302.
  • [60] I. Hirsh, E. Louzon, A. Aharon, R. Gazit, D. Bar, P. Kondrashov, M. Weinstein, M. Savchenko, M. Regensburger, A. Navon, E. Shunam, O. Rahat, A. Mediouni, E. Mor, A. Shay, R. Iosevich, M. Ben-Ezra, A. Tuito, I. Shtrichman, Low SWaP SWIR video engine for image intensifier replacement, Proc. of SPIE Infrared Technol. Appl. XLIV 10624 (1-9) (2018) 1062406, http://dx.doi.org/10.1117/12.2303705.
  • [61] J.H. Ryu, S. Kim, Small infrared target detection by data-driven proposal and deep learning-based classification, Infrared Technol. Appl. XLIV Proc. SPIE 10624 (1-10) (2018), 106241J, http://dx.doi.org/10.1117/12.2304677.
  • [62] http://aviation.stackexchange.com/questions/16876/how-do-stealth-aircraftreduce-the-heat-signature.
  • [63] V.A. Kurganov, http://www.thermopedia.com/content/291/.
  • [64] H.O. Toft, Simplified Aerodynamic Heating of Rockets, Aug., 2014 http://dark.dk/documents/technical notes/simplified%20aerodynamic%20heating%20of%20rockets.pdf
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79f55e16-45b7-4cc1-a0f6-d6b7274bf26e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.