Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of confining pressure on the brittleness of shale is very significant, usually with the increase in confining pressure; the shale shows a tendency to change from brittle to plastic. Therefore, the confining pressure correction is an important part of the brittleness evaluation, but it is often neglected in the conventional shale brittleness evaluation methods. This paper proposes a two-step confining pressure correction method to integrate the brittleness evaluation methods of mineral components, elastic parameters, and mechanical parameters and to comprehensively construct a shale brittleness evaluation index based on confining pressure correction. Step 1 zero confining pressure correction: the elastic brittleness index at zero confining pressure is calibrated using the mineral brittleness index to remove the effect of envelope pressure on brittleness and thus represent the intrinsic brittleness characteristics of the rock. Step 2 confining pressure trend correction: the mechanical parameters are used to correct the rock for the trend of confining pressure in order to reasonably characterize the weakening effect of the confining pressure on the brittleness of the rock, and reasonably characterize the transition from brittle to plastic as the confining pressure increases. By applying it to the brittleness evaluation of actual logging data, the evaluation results can truly and objectively characterize the brittleness of rock under in situ confining pressure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
211--223
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- College of Geophysics, China University of Petroleum, Beijing 102249, China
autor
- Present Address: Foreign Cooperation Projects Department of Dagang Oilfeld, PetroChina, Tianjin 300280, China
autor
- Present Address: Research Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfeld Company, Korla 84100, China
autor
- Present Address: Liaohe Branch of China Petroleum Logging Co., Ltd., Panjing 124010, Liaoning, China
autor
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- College of Geophysics, China University of Petroleum, Beijing 102249, China
autor
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
- College of Geophysics, China University of Petroleum, Beijing 102249, China
Bibliografia
- 1. Altindag R (2003) The correlation of specific energy with rock brittleness concept on rock cutting. J South Afr Inst Min Metall 103(3):163–171
- 2. Alzahabi A, Alqahtani G, Soliman M Y, Bateman R M, Asquith G, Vadapalli R (2015) Fracturability index is a mineralogical index: a new approach for fracturing decision. SPE Saudi Arabia section technical symposium & exhibition SPE-SAS-357
- 3. Breyer J A (2012) Shale reservoirs: giant resources for the 21st century. AAPG Memoir 97, Tulsa AAPG: 69–87
- 4. Curia D, Veeken C H (2018) Seismic inversion and rock physical parameter estimation for the unconventional Vaca Muerta Shale Oil Play, NW Argentina. The 80nd annual international conference and exhibition, EAGE
- 5. Dong DZ, Zou CN, Dai JX, Huang SP, Zheng JW, Gong JM, Wang YM, Li XJ, Guan QZ, Zhang CC, Huang JL, Wang SF, Liu DX, Qiu Z (2016) Suggestions on the development strategy of shale gas in China. Nat Gas Geosci 27(3):397–406
- 6. Eaton B A (1975) The equation for geo-pressure prediction from well logs. Fall meeting of the society of petroleum engineers of AIME: SPE5544.
- 7. Guo ZQ, Li XY, Liu C, Feng X, Shen Y (2013) A shale rock physics model for analysis of brittleness index, mineralogy and porosity in the Barnett Shale. J Geophys Eng 10(2):25006–25015
- 8. Heidari M, Khanlari GR, Torabi-Kaveh M, Kargarian S, Saneie S (2014) Effect of porosity on rock brittleness. Rock Mech Rock Eng 47(2):785–790
- 9. Holt RM, Fjær E, Stenebråten JF, Nes OM (2015) Brittleness of shales: relevance to borehole collapse and hydraulic fracturing. J Petrol Sci Eng 131(1):200–209
- 10. Hughes D J (2014) Drilling deeper: a reality check on US government forecasts for a lasting tight oil and shale gas boom. Corvallis, Oregon, United States: Post Carbon Institute:151–302
- 11. Josh M, Esteban L, Piane CD, Sarout J, Dewhurst DN, Clennell MB (2012) Laboratory characterization of shale properties. J Pet Sci Eng 88:107–124
- 12. Kahraman S (2005) A brittleness index to estimate the sawability of carbonate rocks. Brno, Czech Republic, The International Symposium Eurock
- 13. Kim T, Hwang S, Jang S (2017) Petrophysical approach for S-wave velocity prediction based on brittleness index and total organic carbon of shale gas reservoir: a case study from Horn River Basin, Canada. J Appl Geophys 136:513–520
- 14. Kivi IR, Ameri M, Molladavoodi H (2018) Shale brittleness evaluation based on energy balance analysis of stress-strain curves. J Petrol Sci Eng 167:1–19
- 15. Li K, Ran C, Shao MJ, Zhong Y, Shao ZB (2016) Study on rock mechanics and dynamic-static parameter transformation models in the second member of xujiahe formation in West Sichuan Basin. Science Technology and Engineering 16(6):17–22
- 16. Li QH, Chen M, Jin Y, Hou B, Zhang BW (2012) Indoor evaluation method for shale brittleness and improvement. Chin J Rock Mech Eng 31(8):1680–1685
- 17. Li ZM, Zhang JZ (1997) In-situ stress and petroleum exploration & development. Petroleum industry press, Beijing
- 18. Liu GJ, Xian XF, Zhou JP, Zhang L, Liu QL, Zhang SW (2016) Experimental study the impact of loading deformation characteristics and mineral composition on shale rock brittleness. J China Coal Soc 41(S2):369–375
- 19. Liu ZS, Sun D (2015) New brittleness indexes and their application in shale/clay gas reservoir prediction. Pet Explor Dev 42(1):117–124
- 20. Mavko G (2010) Rock physics of shale. Stanford Rock Physics Laboratory, Stanford, USA
- 21. Rickman R, Mullen M, Petre E, Grieser B, Kundert D (2008) A Practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale. SPE Annual Technical Conference and Exhibition, SPE 115258: 21-24
- 22. Rybacki E, Meier T, Dresen G (2016) What controls the mechanical properties of shale rocks? - Part II: brittleness. J Petrol Sci Eng 144:39–58
- 23. Song LT, Liu ZH, Zhou CC, Yu J, Xiu LJ (2017) Analysis of elastic anisotropy of tight sandstone and the influential factors. Appl Geophys 14(1):10–20
- 24. Wang ZL, Sun T, Cheng F, Wang W, Han C (2018) An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs. J Geophys Eng 15(3):1042–1049
- 25. Yagiz S (2006) An investigation on the relationship between rock strength and brittleness. In: Proceedings of the 59th geological congress of Turkey. Ankara, Turkey: MTA General Directory Press: 352
- 26. Yasin Q, Du QZ, Sohail GM, Ismail A (2017) Impact of organic contents and brittleness indices to differentiate the brittle-ductile transitional zone in shale gas reservoir. Geosci J 21(5):779–789
- 27. Yuan Y, Jiang ZX, Yu C, Guo TX, Shen YS, Zhao RT (2015) Mineral compositions and brittleness of the middle jurassic iacustrine shale reservoirin Northern Qaidam Basin. Geol J Chin Univ 21(1):117–123
- 28. Zhang CC, Wang YM, Dong DZ, Li XJ, Guan QZ (2016) Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of “sweet spot layers” in the Sichuan Basin. Nat Gas Ind 36(9):51–60
- 29. Zhang J, Ai C, Li YW, Zeng J, Qiu DZ (2017) Brittleness evaluation index based on energy variation in the whole process of rock failure. Chin J Rock Mech Eng 36(6):1326–1340
- 30. Zhao P, Li XQ, Sun J, Lai SN, Fu TY, Su GP, Tian XW (2014) Study on mineral composition and brittleness characteristics of shale gas reservoirs from the lower paleozoic in the Southern Sichuan Basin. Geoscience 28(2):396–403
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79f18faf-d706-434f-9d91-d41b837be369