PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stokes flow past a contaminated fluid sphere embedded in a porous medium with slip condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, Stokes flow past a contaminated fluid sphere embedded in a porous medium is considered using interfacial slip on the boundary. The stream functions and drag are computed analytically. Special cases are deduced for drag force and a satisfactory agreement is reached with available data in the literature. It was observed that in viscous fluid and couple stress fluid cases with an increase in the viscosity ratio, the slip parameter, the porous parameter there is an increase in the values of the drag coefficient for varying different parameters, respectively. Also noticed that coefficient of drag values for a uniform flow of the viscous fluid flow over a contaminated viscous fluid sphere in a porous medium with the slip condition are superior to those of a couple stress fluid (CSF) flow.
Rocznik
Strony
253--275
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh, India
  • Department of Mathematics, Institute of Aeronautical Engineering, Dundigal, Hyderabad, 500043, Telangana, India
Bibliografia
  • 1. K. Kumar, V. Singh, S. Sharma, On the onset of convection in a dusty couple-stress fluid with variable gravity through a porous medium in hydro magnetics, Journal of Applied Fluid Mechanics, 8, 1, 55–63, 2015.
  • 2. D. Srinivasacharya, J.V. Ramana Murthy, Flow past an axisymmetric body embedded in a saturated porous medium, Comptes Rendus Mécanique, 330, 417–423, 2002.
  • 3. G.E. Pavlovskaya, T. Meersmann, Ch. Jin, S.P. Rigby, Fluid flow in a porous medium with transverse permeability discontinuity, Physical Review Fluids, 3, 4, 1–20, 2018.
  • 4. H.C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Journal of Applied Sciences Research, 27–34, 1947.
  • 5. M.K. Partha, P.V.S.N. Murthy, G.P.R. Sekhar, Viscous flow past a porous spherical shell-effect of stress jump boundary condition, Journal of Engineering Mechanics, 131, 1291–1301, 2005.
  • 6. T.S.L. Radhika, T.K.V. Iyengar, Stokes flow of an incompressible couple stress fluid past a porous spheroidal shell, Proceedings of the International Multi Conference of Engineers and Computer Scientists, 3, 1–7, 2010.
  • 7. H. Alemayehu, G.R. Krishnamacharya, Dispersion of a solute in peristaltic motion of a couple stress fluid through a porous medium with slip condition, World Academy of Science Engineering and Technology, 51, 803–808, 2011.
  • 8. P. Kumar, Thermo solutal magneto – rotatory convection in couple – stress fluid through porous medium, Journal of Applied Fluid Mechanics, 5, 4, 45–52, 2012.
  • 9. P. Kumar, H. Mohan, Convection in couple-stress rotatory-fluid through porous medium, Science International, 5, 2, 47–55, 2017.
  • 10. B.M. Agoor, N.T.M. Eldabe, Rayleigh–Taylor instability at the interface of superposed couple-stress Casson fluids flow in porous medium under the effect of a magnetic field, Journal of Applied Fluid Mechanics, 7, 4, 573–580, 2014.
  • 11. G. Nagaraju, A. Matta, P. Aparna, Heat transfer on the MHD flow of couple stress fluid between two concentric rotating cylinders with porous lining, International Journal of Advances in Applied Mathematics and Mechanics, 3, 1, 77–86, 2015.
  • 12. N. Rudraiah, K.S. Mallika, N. Sujatha, Electrohydrodynamic dispersion with interphase mass transfer in a poorly conducting couple stress fluid bounded by porous layers, Journal of Applied Fluid Mechanics, 9, 1, 71–81, 2016.
  • 13. A.R. Hassan, S.O. Adesanya, R.S. Lebelo, J.A. Falade, Irreversibility analysis for a mixed convective flow of a reactive couple stress fluid flow through channel saturated porous materials, International Journal of Heat and Technology, 35, 3, 633–638, 2017.
  • 14. L.E. Howle, R.P. Behringer, J.G. Georgiads, Convection and flow in porous media. Part 2. Visualization by shadowgraph, Journal of Fluid Mechanics, 332, 247–262, 1997.
  • 15. D. Srinivasacharya, Motion of a porous sphere in a spherical container, Comptes Rendus Mécanique, 333, 612–616, 2005.
  • 16. D. Srinivasacharya, M.K. Prasad, Creeping flow past a porous approximate sphere stress jump boundary condition, Journal of Applied Mathematics and Mechanics, 91, 10, 824–831, 2011.
  • 17. S. Deo, P. Shukla, B.R. Gupta, Drag on a fluid sphere embedded in a porous medium, Advances in Theoretical and Applied Mechanics, 3, 1, 45–52, 2010.
  • 18. B. Widodo, M. Abu, Ch. Imron, Unsteady nano fluid flow through magnetic porous sphere under the influence of mixed convection, 9th International Conference on Physics and its Applications (ICOPIA) IOP, Conference Series: Journal of Physics, 1153, 1–6, 2019.
  • 19. R. Selvi, P. Shukla, A.N. Filippov, Flow around a liquid sphere filled with a non-Newtonian liquid and placed into a porous medium, Colloid Journal, 82, 152–160, 2020.
  • 20. S.S. Sadhal, P.S. Ayyaswamy, J.N. Chung, Transport Phenomena with Drops and Bubbles, Springer, New York, 1997.
  • 21. S.H. Lee, R.S. Chadwick, L.G. Leal, Motion of a sphere in the presence of a plane interface. Part 1. An approximate solution by generalization of the method of Lorentz, Journal of Fluid Mechanics, 93, 4, 705–726, 1979.
  • 22. H.N. Oguz, S.S. Sadhal, Effects of soluble and insoluble surfactants on the motion of drops, Journal of Fluid Mechanics, 194, 563–579, 1988.
  • 23. D.T. Wasan, Structure and Dynamics of Thin Liquid Films, Interfacial Transport Processes and Rheology – Chemical Engineering Education, pp. 104–111, 1992.
  • 24. A. Saboni, S. Alexandrova, M. Karsheva, Ch. Gourdon, Mass transfer from a contaminated fluid sphere, AIChE Journal, 57, 7, 1684–1692, 2011.
  • 25. J.V.R. Murthy, M.P. Kumar, Exact solution for flow over a contaminated fluid sphere for Stokes flow, Journal of Physics: Conference Series, 662, 012016, 2015.
  • 26. C.L.M.H. Navier, Mémoire sur les lois du Mouvement des Fluides, Mémoires de l’Académie Royale des Sciences de l’Institut de France, 389–440, 1823.
  • 27. O.I. Vinogradova, Drainage of a thin liquid film confined between hydrophobic surfaces, Langmuir, 11, 6, 2213–2220, 1995.
  • 28. C.O. Ng, How does wall slippage affect hydrodynamic dispersion, Microfluidics and Nanofluidics, 10, 47–57, 2011.
  • 29. Z.-G. Feng, E.E Michaelides, S. Mao, On the drag force of a viscous sphere with interfacial slip at small but finite Reynolds numbers, Fluid Dynamics Research, 44, 025502, 1–16, 2012.
  • 30. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff publishers, The Hague, 1983.
  • 31. E.E. Michaelides, Particles, Bubbles and Drops – Their Motion, Heat and Mass Transfer, World Scientific Publishing, 2006.
  • 32. J.V.R. Murthy, M.P. Kumar, Effect of slip parameter on the flow of viscous fluid past an impervious sphere, International Journal of Applied Science and Engineering, 12, 203–223, 2014.
  • 33. P.N.L. Devi, M.P. Kumar, Drag over a fluid sphere filled with couple stress due to flow of a couple stress fluid with slip condition, Trends in Sciences, 19, 24, 3133, 2022.
  • 34. P.N.L. Devi, M.P. Kumar, Couple stress fluid past a contaminated fluid sphere with slip condition, Applied Mathematics and Computation, 446, 1–12, 2023.
  • 35. P.N.L. Devi, M.P. Kumar, Oscillatory flow of couple stress fluid flow over a contaminated fluid sphere with slip condition, CFD Letters, 15, 8, 148–165, 2023.
  • 36. K.V. Lakshmi, M.P. Kumar, Stokes flow on micropolar fluid beyond fluid sphere with slip condition, Journal of Applied Mathematics and Mechanics, 102, 1–11, 2022.
  • 37. K.V. Lakshmi, M.P. Kumar, Exact solution for non-Newtonian fluid flow beyond a contaminated fluid sphere, Engineering Transactions, 70, 3, 287–299, 2022.
  • 38. P. Debye, A.M. Bueche, Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution, Journal of Chemical Physics, 16, 573, 573–579, 1948, doi: 10.1063/1.1746948.
  • 39. K. Danov, R. Aust, F. Durst, U. Lange, Influence of the surface viscosity on the hydrodynamic resistance and surface diffusivity of a large Brownian particle, Journal of Colloid and Interface Science, 175, 36–45, 1995.
  • 40. V. Cristini, J. Bławzdziewicz, M. Loewenberg, Drop breakup in three-dimensional viscous flows, Physics Fluids, 10, 8, 1781–1783, 1998.
  • 41. H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annual Review of Fluid Mechanics, 36, 381–411, 2004.
  • 42. J.W. Swan, A.S. Khair, On the hydrodynamics of ‘slip–stick’ spheres, Journal of Fluid Mechanics, 606, 115–132, 2008.
  • 43. V.K. Stokes, Couple stresses in fluids, Physics of Fluids, 9, 1710–1715, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79efbdce-7657-4e44-989e-07ca53be9447
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.