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In this paper, Stokes flow past a contaminated fluid sphere embedded in
a porous medium is considered using interfacial slip on the boundary. The stream
functions and drag are computed analytically. Special cases are deduced for drag
force and a satisfactory agreement is reached with available data in the literature. It
was observed that in viscous fluid and couple stress fluid cases with an increase in
the viscosity ratio, the slip parameter, the porous parameter there is an increase
in the values of the drag coefficient for varying different parameters, respectively.
Also noticed that coefficient of drag values for a uniform flow of the viscous fluid flow
over a contaminated viscous fluid sphere in a porous medium with the slip condition
are superior to those of a couple stress fluid (CSF) flow.
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1. Introduction

The study of fluid flow through porous medium is very important
in many areas of science and technology including geophysical fluid dynam-
ics, chemical processing industry, petroleum industry, solidification, recovery
of the crude oil, ground water recharge, aquifers, oil technology waste treat-
ment, biology, reaction engineering, soil science and separation science as men-
tioned in Kumar et al. [1], Srinivasacharya and Ramana Murthy [2] and
Pavlovskaya et al. [3].

Brinkman [4] evaluated the viscous force exerted by a flowing fluid on
a dense swarm of particles by introducing modified Darcy’s equation for the
porous medium, which is commonly known as the Brinkman equation. Partha
et al. [5] described the impact of tangential stresses developed in the porous
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medium because of the stress jump boundary conditions observed in spherical
shells. Further the Brinkman equation was used to govern the flow inside the
porous medium. Radhika and Iyengar [6] critically analyzed the influence
of stresses, drag on spherical shells and bodies having porous structure. The
effect of various flow parameters on drag was determined numerically. Ale-
mayehu and Krishnamacharya [7] discussed the couple stress fluids passing
in a peristaltic motion due to distribution of a solute in a porous medium under
a slip condition. The well-known Taylor principle was used to obtain a closed
form solution for the distribution coefficients. Kumar and Mohan [8, 9] in their
works discussed the heated layer of couple stress fluid due to the thermo-solutal
convection method, which affects the uniform flow of the vertical magnetic field
and vertical rotation on the porous fluid flow. Agoor and Eldabe [10] studied
the Rayleigh–Taylor instability growth rate in a porous medium for the non-
Newtonian Casson fluid with couple stress. Nagaraju et al. [11] investigated
the behaviour of CSF flow between two concentric rotating vertical porous cylin-
ders subjected to a radial magnetic field.

The solutions accounting for the effects of various control parameters on ve-
locity profiles and temperature distributions were obtained. Rudraiah et al. [12]
studied the impact of the dispersion coefficient on the porous parameter and the
couple stress parameter. Their findings make it obvious that the dispersion co-
efficient rises with the porous parameter while decreasing with the couple stress
parameter. Hassan et al. [13] work investigated the influence of temperature-
dependent density on extremely ignitable CSF passed through a channel in
a steady state by using the Adomian Decomposition Method (ADM). Howle
et al. [14] work described the effect of convection on porous flows having ordered
and disordered patterns, solved by a modified shadow graphic technique. Srini-
vasacharya and Prasad [15, 16] studied the creeping motion of a porous sphere
passing through the center of spherical container with the stress jump boundary
condition. They extended the work with the same conditions on a porous approx-
imate sphere. In both the studies, inside and outside flow motions were analyzed
with the Brinkman condition. Deo et al. [17] reported on drag force effects on
a fluid sphere having a porous structure. The Brinkman and Stokes equations
were used to study the fluid outside and inside the sphere to numerically analyze
the stream function. Widodo et al. [18] work reported the nano-fluid through
porous spheres when mixed convection conditions were present. The impact of
magnetic and convectional characteristics on velocity and temperature profiles
was examined using the Keller–Box scheme. Selvi et al. [19] investigated the
flow around a Reiner–Rivlin non-Newtonian liquid particle with a Newtonian
liquid shell in a permeable medium employing Brinkman, Stokes, and Reiner–
Rivlin equations, providing analytical solutions and exploring the drag force
dependence on permeability, the viscosity ratio, and a dimensionless parameter.
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Few applications of contaminated fluid drop are in nuclear power plants,
chemical reactors, petroleum refining equipment, sediment and pollutant trans-
port processing in aquatic environment as mentioned in monographs of Sadhal
et al. [20]. Lee et al. [21] explored the motion of a sphere near a fluid-fluid in-
terface, deriving solutions for point force, extending to higher-order terms for
solid sphere motion using reflections, and calculating drag force, hydrodynamic
torque, and rotational motion for different cases and viscosity ratios. Oguz and
Sadhal [22] have examined the fluid dynamics of moving drops with soluble
surfactants and insoluble impurities, proposing a two-impurity model to ad-
dress experimental discrepancies, utilizing semi-analytical analysis for weakly
inertial flows and achieving good agreement with data, including a novel analyt-
ical expression for the drag force in cases involving only insoluble surfactants.
Wasan [23] have identified a new mechanism for the stabilization of foam and
emulsion films via the presence of such ordered microstructures inside the films.
The lifetimes of foams or emulsions with stratifying films are observed to be much
longer. Saboni et al. [24] developed a numerical equation and used it to analyze
the effect of interface contamination and the flow system on the concentration
profiles, inside and outside a fluid sphere for different ranges of the Reynolds
number. Murthy and Kumar [25] considered the viscous flow through the con-
taminated fluid sphere with no slip condition and calculated the shear stress and
resistance on the surface.

Navier [26] introduced the slip boundary condition which assumes that the
amount of slip is proportional to the shear rate in the fluid at the solid surface
and the slip length is defined as the distance from the fluid-solid interface to
where the linearly extrapolated tangential velocity vanishes. Vinogradova [27]
analysed the apparent slip of fluids at the hydrophobic interface and concluded
that this slippage was caused both by a less viscous oil film close to the solid
interface and, possibly, by an air film at the solid/liquid interface. Ng [28] ex-
plored the impact of wall slip on hydrodynamic dispersion in pressure-driven
flows, particularly when slip lengths are unequal or involve phase exchange with
the wall, can either reduce or reverse the decreasing effect on dispersion ob-
served in a basic case, affecting convection speed and dispersity. Feng et al. [29]
examined the hydrodynamic drag force on a small viscous sphere with an in-
terfacial slip. Using a singular perturbation method, they derived an analyti-
cal expression for the drag force coefficient and observed a significant reduc-
tion in the drag force due to interfacial slip. The monographs of Happel and
Brenner [30] and Michaelides [31] have explained in detail about the fluid
sphere, its size and shape, and applications of fluid sphere models in industry.
Also, the slip boundary condition at the interface of a fluid sphere is described
(page 81) by Michaelides [31]. Murthy and Kumar [32] have obtained the
drag value and the vorticity function for an impervious sphere for intermedi-
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ate Reynolds numbers with a slip on its surface using the Homotopy Analysis
Method. It was observed that the vorticity diffusion and the wake size beyond
the sphere are rising with a rise in Reynolds number. Devi and Kumar [33, 34]
have obtained an exact solution for CSF flow beyond a fluid drop filled with
a CSF using slip and illustrated the drag force analytically. Also, extended the
work over a partially contaminated fluid sphere with the same condition. Devi
and Kumar [35] have addressed oscillatory couple stress fluid flow on a con-
taminated fluid sphere with slip on a boundary. Analytic methods were used
to obtain the stream function and drag force. Lakshmi and Kumar [36] have
obtained an analytical solution for drag with uniform flow of micropolar fluid
past a fluid sphere. An exact solution of a micropolar fluid flow past a con-
taminated fluid sphere with the slip condition was obtained by Lakshmi and
Kumar [37].

Debye and Bueche [38] extended Einstein’s theory for impermeable spheres
to calculate intrinsic viscosity, diffusion, and a sedimentation rate of polymers,
substituting a coiled polymer molecule as a hindrance to liquid flow, with the
resulting shielding determining the exponent in the exponential relation between
intrinsic viscosity and molecular weight, emphasizing the indirect and polymer-
specific nature of this relationship. Danov et al. [39] addresses the slow motion
of a spherical particle in viscous liquid, exploring Brenner and Leal’s theory on
surface diffusivity and providing insights into the “drag-out problem”, revealing
a significant decrease in the surface diffusion coefficient with increasing surface
viscosity for various contact angles. Cristini et al. [40] introduced a three-
dimensional boundary integral algorithm with adaptive surface discretization for
accurately simulating drop breakup in viscous flows, applied to study breakup
under shear flow and buoyancy with comparisons to experimental observations.
Stone et al. [41] studied electro-kinetic transport phenomena encountered in
most microfluidic devices. Electro-osmotic flow is one of the popular electro-
kinetic transport phenomena of microfluidic flow and refers to the movement of
ionized liquids in the channel, which is induced by an external electric field.

The available literature focused on couple stress fluids, porous medium and
contaminated fluid spheres on different geometries with slip and without slip con-
ditions. The mentioned works have not addressed much on the porous medium
of a CSF (non-Newtonian fluid) flow on a surfactant fluid sphere with the slip
condition. The present work mainly focuses to give an analytical solution for
geophysical applications found in different categories of flows like viscous fluid
flow past a contaminated fluid sphere fixed in a porous medium and couple stress
fluid flow past a contaminated fluid sphere fixed in a porous medium. Hence, the
combination of the CSF flow over contaminants fluid sphere is a new study. This
study fills the research gap and it shows new directions for the researchers to
work more in this area.
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The paper is organized as follows: In Section 2, we consider uniform flow of
viscous fluid flow over a contaminated viscous fluid sphere in a porous medium.
In Section 3, we analyze uniform flow of the CSF flow over a contaminated CSF
sphere in a porous medium.

2. Uniform flow of viscous fluid over a contaminated viscous fluid
sphere in a porous medium:

2.1. Formulation of the problem

Consider a uniform flow of the viscous fluid over a contaminated viscous fluid
sphere which is fixed in a porous medium. The outside fluid and inside fluid are
immiscible. The fluid sphere is assumed to be non-deformed, with a small size
as mentioned in monographs of Sadhal et al. [20] and Michaelides [31]. The
flow is two dimensional, steady, axisymmetric and not compressible with no body
forces. The surfactants (contamination) in the flow accumulate at the rear end
forming a cap region. The thickness of contamination is uniform and small. The
extension of contamination region is mentioned as x0 which is a varying point
in between −1 to 1. The region which is contaminated is known as cap region
(x0 < x ≤ 1) and the remaining portion (−1 < x ≤ x0) is no cap region. The
geometry is given in Fig. 1.

Fig. 1. Flow geometry of viscous fluid past a contaminated viscous fluid sphere embedded in
a porous medium.

We assume that the Brinkman model governs the region outside the flow
with a porous medium.

The equation of continuity is

(2.1) ∇q̄ = 0.
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The field equation that determines the internal flow of the viscous fluid flow is
as follows:

(2.2) ∇2q̄ =

(
1

µi

)
∇P,

the momentum equation of the outer region with the porous region is

(2.3) ∇2q̄ −
(

Γ1

a

)2

q̄ =
1

µe
∇P.

Here, P is hydrostatic pressure at any point, ρ is fluid density, q̄ is fluid velocity,
µe is external fluid viscosity, µi is internal fluid viscosity, µ is coefficient of
viscosity, Γ1 is root of the equations for the given porous function, k is the
permeability of the porous medium, U∞is velocity at infinity.

Due to the geometrical shape of the present problem, we choose a spherical
coordinate system (R, θ, ϕ) for reference. The scale factors for the system are
h1 = 1, h2 = R, h3 = R sin θ. “The spherical coordinate system with the origin
at the center of the sphere and Z-axis along the flow direction as considered” [34].

In the axisymmetric flow, velocity components U , V are expressed as:

(2.4) U(R, θ) =
1

R2 sin θ

∂Ψ

∂θ
, V (R, θ) =

−1

R sin θ

∂Ψ

∂R
, q̄ = ∇× Ψeθ

R2 sin θ
.

Here

Ψ =

{
Ψi, R < a,

Ψe, R ≥ a.

Eliminating pressure P in Eq. (2.3) and using non-dimensional parameters:

(2.5)
R = ar, Ψ = ψU∞a

2, P = p
U∞µ

a
, E2

0 =
E2

a2
,

U = uU∞, V = vV∞, porosity parameter Γ2
1 =

a2

k
,

reduces Eq. (2.2) and Eq. (2.3) to:

E4ψi = 0,(2.6)

E2[E2 − Γ2
1]ψe = 0,(2.7)

where

E2 ≡ ∂2

∂r2
+

1

r2

∂2

∂θ2
− cot θ

r2

∂

∂θ
.

When x = cos θ, we get,

E2 ≡ ∂2

∂r2
+

1− x2

r2

∂2

∂x2
.
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The solutions of ψ Eqs. (2.6), (2.7) which are regular for outside no-cap and
cap regions, inside no-cap and cap regions are represented as [25]:

ψ′e(r, x) =

{
fen(r)G2(x) for −1 < x ≤ x0 (no cap region),
fec(r)G2(x) for x0 < x ≤ 1 (cap region),

(2.8)

ψ′i(r, x) =

{
fin(r)G2(x) for −1 < x ≤ x0 (no cap region),
fic(r)G2(x) for x0 < x ≤ 1 (cap region).

(2.9)

The solutions of viscous fluid flow over a contaminated viscous fluid sphere in
a porous medium are given by Eqs. (2.8) and (2.9) which are regular for outside
flow of no-cap and cap regions are (fen(r) & fec(r)) and for inside flow of no-cap
and cap regions are (fin(r) & fic(r)):

fen(r) =

(
f1

r
+ r2 + g1

√
rK 3

2
(Γ1r)

)
,(2.10)

fin(r) = (f2r
2 + g2r

4),(2.11)

fec(r) =

(
f3

r
+ r2 + g3

√
rK 3

2
(Γ1r)

)
,(2.12)

fic(r) = (f4r
2 + g4r

4),(2.13)

“where K 3
2
(x) and I 3

2
(x) are Modified Bessel’s functions of order 3

2 and G2(x) =
1
2(1− x2) is the Gegenbauer polynomial of order 2” [36].

In a cap region f4 = g4 = 0, i.e., ψ′ic = 0.
The parameters f1, g1, f2, g2, f3, g3 in Eqs. (2.10)–(2.13) are obtained by

implementing the following boundary conditions (BC’s) Eqs. (2.14)–(2.17).
(i) Regularity conditions:

(2.14)
a) lim

r→∞
ψ′e = 1

2r
2 sin2 θ (outside the region),

b) lim
r→0

ψ′i = Finite (inside the region).

(ii) Impermeability condition: On the boundary normal velocity is zero,

(2.15) ψ′en = ψ′ec = ψ′in = ψ′ic = 0 on r = 1 and (−1 ≤ x ≤ 1).

(iii) Slip condition: “The tangential velocity is directly proportional to the
tangential stress along the surface” [30, 31, 36], i.e.,

(2.16) τrθe = ϑ(Vθe − Vθi), where ϑ is the sliding friction and (−1 ≤ x ≤ 1),

where Vθe, Vθi stands for external and internal tangential velocities respectively.
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(iv) Shear stress continuous is continuous at the surface of the fluid sphere,
i.e.,

(2.17) τrθe = τrθi (−1 ≤ x ≤ x0).

The boundary conditions are from [20, 30, 31].

2.2. Elucidation of the problem

Using BC’s (2.14)–(2.17) in Eqs. (2.10)–(2.13), the system of equations was
obtained:

(2.18)

f1 = −(1 + g′1),

f2 = −g2,

f3 = −(1 + g′3),

f1(s+ 4) + g′1(Γ2
1 + 2 + (s+ 2)∆1(Γ1)) + 2sf2 + 4sg2 = 2 + 2s,

f3(s+ 4) + g′3(Γ2
1 + 2 + (s+ 2)∆3(Γ1)) = 2s+ 2,

4f1 + g′1(2 + Γ2
1 + 2∆1(Γ1)) + 2µf2 − 4µg2 = 2,

where g′1 = g1K 3
2
(Γ1), g′3 = g3K 3

2
(Γ1) , slip parameter (s) = ϑa

µ , viscosity ratio
(µ) = µi

µe
.

Solving the system of Eqs. (2.18) analytically, resulted to:

(2.19)

g′1 =
(3s+ 6)n′2 − 6m′2
m′1n

′
2 −m′2n′1

, g2 =
6m′1 − (6 + 3s)n′1
m′1n

′
2 −m′2n′1

, g′3 =
3s+ 6

m′3
,

m′1 = [−s− 2 + Γ2
1 + (2 + s)∆1(Γ1)], m′2 = [2s],

n′1 = [−2+Γ2
1 + 2∆1(Γ1)], n′2 = [−6µ],

m′3 = [−s− 2 + Γ2
1 + (2 + s)∆3(Γ1)],

where ∆1(Γ1) =
1+Γ1+Γ2

1
1+Γ1

(no-cap region related), ∆3(Γ1) =
1+Γ1+Γ2

1
1+Γ1

(cap region
related).

Thus, outside and inside flow stream functions are found.

2.3. Drag force evaluation

A fluid sphere submerged in a viscous fluid experiences drag force, which is
equal to

(2.20) Dg1 = 2πa2

π∫
θ=0

[τrr cos θ − τrθ sin θ]r=1 sin θ dθ.

Here τrr = −P + 2µe
∂U
∂r , τrθ = µe

[
1
r
∂U
∂θ + ∂V

∂r −
V
r

]
.
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Substitution and simplification give, the drag force in terms of a cap angle
as:

Dg1 = −2πaµeU∞

{[
Γ2

1 −
Γ2

1

2
f1 + 4fen(1)− 2f ′en(1)

][
x3

0

3
+

1

3

]
(2.21)

+

[
Γ2

1 −
Γ2

1

2
f3 + 4fec(1)− 2f ′ec(1)

][
1

3
− x3

0

3

]
+ [−f ′′en(1) + 2f ′en(1)]

[
x0

2
− x3

0

6
+

1

3

]
+ [fen(1)]

[
x3

0

3
− x0 −

2

3

]
+ [−f ′′ec(1) + 2f ′ec(1)]

[
1

3
− x0

2
+
x3

0

6

]
+ [fec(1)]

[
−2

3
− x3

0

3
+ x0

]}
.

The values inEqs. (2.10) and (2.12) are taken onR.H.S. for computationEq. (2.21).
When x0 = −1, contaminated fluid sphere reduces to a solid sphere. Then

drag Eq. (2.21) becomes:

Dg1 = −2πaµeU∞

{[
2

3

][
Γ2

1 −
Γ2

1

2
f3 + 4fec(1)− 2f ′ec(1)

]
(2.22)

+

[
2

3

]
[−f ′′ec(1) + 2f ′ec(1)]−

[
4

3

]
[fec(1)]

}
.

Substituting values from Eq. (2.19) and simplifying we get,

(2.23) Dg1 = 2πaµeU∞

[
(Γ2

1 + 3Γ1 + 3)s+ Γ3
1 + 3Γ2

1 + 6Γ1 + 6

s+ Γ1 + 3

]
.

When the slip parameter (s)→∞, we get no slip condition, then the drag is

(2.24) Dg1 = 2πaµeU∞[Γ2
1 + 3Γ1 + 3].

When there is no porosity, i.e., Γ1 = 0, then we get the drag force for a solid
sphere with no slip condition as

(2.25) Dg1 = 6πaµeU∞,

which matches with the results of [17, 30, 42].
When x0 = 1, contaminated fluid sphere reduces to a fluid sphere. Then drag

Eq. (2.21) becomes

Dg1 = −2πaµeU∞

{[
2

3

][
Γ2

1 −
Γ2

1

2
f1 + 4fen(1)− 2f ′en(1)

]
(2.26)

+

[
2

3

]
[−f ′′en(1) + 2f ′en(1)]−

[
4

3

]
[fen(1)]

}
.
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Substituting the values from Eq. (2.19) and simplifying we get the drag as

(2.27) Dg1 =

2πaµeU∞Γ2
1

[
s(3µΓ2

1+9µΓ1+9µ+Γ3
1+3Γ2

1+6Γ1+6)+3µΓ3
1+9µΓ2

1+18µΓ1+18µ

Γ2
1s(3µ+Γ1+3)+9µΓ2

1+3µΓ3
1

]
.

When slip parameter (s)→∞, we get no slip condition, then drag is

(2.28) Dg1 = 2πaµeU∞

[
3µ(Γ2

1 + 3Γ1 + 3) + Γ3
1 + 3Γ2

1 + 6Γ1 + 6

3µ+ Γ1 + 3

]
.

With the assumption of no porosity,

(2.29) Dg1 = 2πaµeU∞

[
9µ+ 6

3µ+ 3

]
.

With the viscosity ratio µ→∞, we get the drag force for a solid sphere with no
slip condition as

(2.30) Dg1 = 6πaµeU∞,

which matches with the results of [17, 30, 42].
Now the coefficient of the drag (CD) is computed as

(2.31) CD =
Dg1

1
2πρU

2
∞a

2
=
πµeU∞aΓ2

1(−2− g′1 − g′3).
1
2πρU

2
∞a

2
.

When s→∞, µ→∞, and Γ1 = 0, we get

(2.32) CD = − 24

Re
, with Re =

(2a)ρU∞
µe

,

which matches with the coefficient of the drag for a solid sphere without a slip
condition [30].

3. Uniform flow of the CSF flow over a contaminated CSF sphere in
a porous medium

3.1. Problem formulation

The equations of motion characterize a CSF flow as given by Stokes [43]:

∂ρ

dt
+ ρ∇(q̄) = 0,(3.1)

ρ
dq̄

dt
= ρf̄ +

(
1

2

)
∇× (ρC̄) +∇(τ (s)) +

(
1

2

)
∇× (M̄),(3.2)
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where ρ is density of the fluid, τ (s) is the symmetric part of the force stress
tensor, M̄ is the couple stress tensor, f̄ , C̄ are the body force per unit mass and
the body couple per unit mass, respectively.

The couple stress tensormij that arises in the theory has the linear constitute
relation:

(3.3) mij =

(
1

3

)
mδij + 4ηωji + 4η′ωij ,

where ωij is the spin tensor, η, η′ are the couple stress viscosity coefficients with
|η′| ≤ η and δi,j denotes the Kronecker symbol

δi,j =

{
1, i = j,

0, i 6= j.

Consider a uniform flow of CSF over a contaminated CSF sphere which is
fixed in a porous medium with the Brinkman model, a flow is uniform far from
the body. The outside fluid and inside fluid are immiscible. The fluid sphere
assumed as non-deformed. Also assumed the size of it to be very small as men-
tioned in monographs of Sadhal et al. [20] and Michaelides [31]. The flow is
presumed incompressible, steady and axi-symmetric without body forces. The
work geometry is given in Fig. 2.

Fig. 2. Flow geometry of CSF past a contaminated CSF sphere embedded in a porous
medium.

The Brinkman’s equation of a porous medium is taken as:

∇2q̄ −
(

Γ1

a

)2

q̄ =
1

µe
∇P,
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and the CSF equation in absence of body forces is

(3.4) ρ
dq̄

dt
= −∇P + µ(∇×∇× q̄)− η(∇×∇×∇×∇× q̄).

With Eq. (2.4) and eliminating the pressure P the momentum equation for a dual
flow of non-Newtonian fluid past a fluid sphere embedded in a porous medium
is given by:

(3.5) E2[E2 − δ2
1 ][E2 − Γ2

1]ψ = 0,

where the porosity parameter Γ2
1 = a2

k and the couple stress parameter δ2
1 = µa2

η ,

with x = cos θ, E2 ≡ ∂2

∂r2
+ 1−x2

r2
∂2

∂x2
.

The solutions of Eq. (3.5) for the outer region (ψ′′e ) and for the inner region
(ψ′′i ) are assumed in the form:

ψ′′en(r, x) = fen(r)G2(x)(3.6)

=

(
b1
r

+ r2 + c1

√
rK 3

2
(Γ1r) + d1

√
rK 3

2
(δ1r))G2(x),

ψ′′in(r, x) = fin(r)G2(x) = (b2r
2 + c2r

4 + d2

√
rI 3

2
(δ1r))G2(x),(3.7)

ψ′′ec(r, x) = fec(r)G2(x)(3.8)

=

(
b3
r

+ r2 + c3

√
rK 3

2
(Γ1r) + d3

√
rK 3

2
(δ1r)

)
G2(x),

ψ′′ic(r, x) = fic(r)G2(x) = (b4r
2 + c4r

4 + d4

√
rI 3

2
(δ1r))G2(x).(3.9)

In a cap region b4 = c4 = d4 = 0 and hence, ψ′′ic = 0. The parameters b1, c1, d1,
b2, c, d2, b3, c3, d3 in Eqs. (3.6)–(3.9) are obtained by implementing the following
boundary conditions:

(i) Regularity conditions:

(3.10)
a) lim

r→∞
ψ′′e = 1

2r
2 sin2 θ (outside the region),

b) lim
r→0

ψ′′i = Finite (inside the region).

(ii) Impermeability condition: on the boundary normal velocity is zero

(3.11) ψ′′en = ψ′′ec = ψ′′in = ψ′′ic = 0 on r = 1 (−1 ≤ x ≤ 1).

(iii) Slip condition: “The tangential velocity is directly proportional to the
tangential shear along the clear surface” [30, 31], i.e.,

(3.12) τrθe = ϑ(Vθe − Vθi) (−1 ≤ x ≤ 1),

where Vθe, Vθi stands for external and internal tangential velocities, respectively.
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(iv) Shear stress continuous: at crossing the surface of the fluid sphere, i.e.,

(3.13) τrθe = τrθi (−1 ≤ x ≤ x0).

(v) Type A condition: vanishing of the couple stress on the boundary. In
terms of a stream function

(3.14)
(
∂[E2ψ]

∂r

)
=

(
e+

1

r

)
E2ψ (−1 ≤ x ≤ 1),

where e = η′

η with (η′ 6= η) , here η, η′ is couple stress viscosity coefficients.
Using the BC’s (3.10)–(3.14) in Eqs. (3.6)–(3.9) the following system of equa-

tions is obtained:

(3.15)

b1 + c′1 + d′1 = −1,

b2 + c2 + d′2 = 0,

b3 + c′3 + d′3 = −1,

− (6 + s)b1 + d′1

(
−δ2

1 − 4− (2 + s)∆1(δ1) +
δ4

1

λ2

)
+ c′1

(
−Γ2

1 − 4− (2 + s)∆1(Γ1) +
Γ4

1

λ2

)
− 2sb2 − 4sc2 + d′2s∆2(δ1) = −2s,

(6 + s)b3 + d′3

(
−δ2

1 − 4− (2 + s)∆3(δ1) +
δ4

1

λ2

)
+ c′3

(
−Γ2

1 − 4− (2 + s)∆3(Γ1) +
Γ4

1

λ2

)
= −2s,

− 6b1 + d′1

(
−δ2

1 − 4− 2∆1(δ1) +
δ4

1

λ2

)
+ c′1

(
−Γ2

1 − 4− 2∆1(Γ1) +
Γ4

1

λ2

)
− µd′2

(
−δ2

1 − 4− 2∆2(δ1) +
δ4

1

λ2

)
+ 6µc2 = 0,

d′1δ
2
1{∆1(δ1) + (1 + e)}+ c′1Γ2

1{∆1(Γ1) + (1 + e)} = 0,

−d′2δ2
1{∆2(δ1) + (1 + e) + c2{10− 10e} = 0,

d′3δ
2
1{∆3(δ1) + (1 + e)}+ c′3Γ2

1{∆3(Γ1) + (1 + e)} = 0,

where

d′1 = d1K 3
2
(δ1), c′1 = c1K 3

2
(Γ1), d′2 = d2I 3

2
(δ1), d′3 = d3K 3

2
(δ1), c′3 = c3K 3

2
(Γ1).
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Solving the above equations, we get:

(3.16)

b1 = −1 + (ζ1 − 1)c′1, d′1 = −ζ1c
′
1, c′1 =

−(3s+ 6)n′5 + 6m′5
Z1

,

b2 = −(ζ2 + 1)d′2, c2 = ζ2d
′
2, d′2 =

(3s+ 6)n′4 − 6m′4
Z1

,

b3 = −1 + (ζ3 − 1)c′3, d′3 = −ζ3c
′
3, c′3 =

−(3s+ 6)

n′3
,

ζ1 =
Γ2

1[∆1(Γ1) + (1 + e)]

δ2
1 [∆1(δ1) + (1 + e)]

, ζ2 =
δ2

1 [∆2(δ1) + (1 + e)]

(10− 10e)
,

ζ3 =
Γ2

1[∆3(Γ1) + (1 + e)]

δ2
1 [∆3(δ1) + (1 + e)]

,

where Z1 = m′4n
′
5 −m′5n′4 and

(3.17)

m′4 =

[
ζ1

(
−2− s+ δ2

1 + (2 + s)∆1(δ1)− δ4
1

λ2

)
+ s+ 2− Γ2

1 − (2 + s)∆1(Γ1) +
Γ4

1

λ2

]
,

m′5 = s[−2ζ2 + 2 + ∆2(δ1)],

n′4 =

[
ζ1

(
−2 + δ2

1 + 2∆1(δ1)− δ4
1

λ2

)
+ 2− Γ2

1 − 2∆1(Γ1) +
Γ4

1

λ2

]
,

n′5 = µ

[
6ζ2 + δ2

1 + 4 + 2∆2(δ1)− δ4
1

λ2

]
,

n′3 =

[
ζ3

(
−2− s+ δ2

1 + (2 + s)∆3(δ1)− δ4
1

λ2

)
+ s+ 2− Γ2

1 − (2 + s)∆3(Γ1) +
Γ4

1

λ2

]
.

Thus, outside and inside flows of stream functions are found.

3.2. Drag force evaluation

A fluid sphere submerged in CSF fluid experiences the drag force, which is
equal to:

(3.18) Dg2 = 2πa2

π∫
θ=0

[τrr cos θ − τrθ sin θ]r=1 sin θ dθ.

With x = cos θ and x0 = cos(θ0) as a cap angle. Substituting Eqs. (3.16), (3.17)
and simplifying, we obtained the drag force with a cap angle as:
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(3.19) Dg2 = −2πaµeU∞

{[
Γ2

1 −
Γ2

1

2
b1 + 4fen(1)− 2f ′en(1)

][
x3

0

3
+

1

3

]
+

[
Γ2

1 −
Γ2

1

2
b3 + 4fec(1)− 2f ′ec(1)

][
1

3
− x3

0

3

]
+

[
−f ′′en(1) + 2f ′en(1) +

1

δ2
1

f iven(1)

][
x0

2
− x3

0

6
+

1

3

]
+

[(
1 +

6

δ2
1

)
fen(1)− 4

δ2
1

f ′en(1) +
2

δ2
1

f ′′en(1)

][
x3

0

3
− x0 −

2

3

]
+

[
−f ′′ec(1) + 2f ′ec(1) +

1

δ2
1

f ivec (1)

][
1

3
− x0

2
+
x3

0

6

]
+

[(
1 +

6

δ2
1

)
fec(1)− 4

δ2
1

f ′ec(1) +
2

δ2
1

f ′′ec(1)

][
−2

3
− x3

0

3
+ x0

]}
.

The values in Eqs. (3.6) and (3.8) are taken on R.H.S. to calculate Eq. (3.19).
When x0 = −1, a contaminated fluid sphere reduces to a solid sphere. Then

drag Eq. (3.19) becomes

Dg2 = −2πaµeU∞

{[
2

3

][
Γ2

1 −
Γ2

1

2
b3 + 4fec(1)− 2f ′ec(1)

]
(3.20)

+

[
2

3

][
−f ′′ec(1) + 2f ′ec(1) +

1

δ2
1

f ivec (1)

]
−
[

4

3

][(
1 +

6

δ2
1

)
fec(1)− 4

δ2
1

f ′ec(1) +
2

δ2
1

f ′′ec(1)

]}
.

When x0 = 1, the contaminated fluid sphere reduces to a fluid sphere. Then
Eq. (3.19) becomes

Dg2 = −2πaµeU∞

{[
2

3

][
Γ2

1 −
Γ2

1

2
b1 + 4fen(1)− 2f ′en(1)

]
(3.21)

+

[
2

3

][
−f ′′en(1) + 2f ′en(1) +

1

δ2
1

f iven(1)

]
−
[

4

3

][(
1 +

6

δ2
1

)
fen(1)− 4

δ2
1

f ′en(1) +
2

δ2
1

f ′′en(1)

]}
.

Substituting values obtained from Eqs. (3.16), (3.17) with the assumption of
Γ2

1 = 0 (no porosity), the couple stress parameter (δ2
1 → ∞) and s → ∞ (the

slip condition reduces to a no-slip condition), we obtained the drag force for
a solid sphere with no slip condition as

(3.22) Dg2 = 6πaµeU∞

which matches with the results of Deo et al. [17], Happel and Brenner [30],
Swan and Khair [42]).
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Now the coefficient of drag (CD) is computed as:

(3.23) CD =
Dg2

1
2πρU

2
∞a

2
=
πµeUaΓ2

1(−2− c′1 − c′3 − d′1 − d′3)
1
2πρU

2
∞a

2
.

When s→∞, µ→∞, δ2
1 →∞ and Γ1 = 0, then we get:

(3.24) CD = − 24

Re
, with Re =

(2a)ρU∞
µe

,

which matches with the coefficient of drag (CD) for a solid sphere without the
slip condition (Happel and Brenner [30]).

4. Results and discussion

We obtained stream function for internal and external flows to the spherical
cap. Then the drag acts on a spherical cap due to the external flow by using
an integral formula on the stream function. Here two cases of flows past the
contaminated sphere are considered. 1. The viscous flow past the viscous con-
taminated fluid sphere and 2. The couple stress fluid past the couple stress fluid
contaminated sphere. In both cases, the effect of physical parameters on the drag
are shown in the form of figures.

Case 1: The uniform viscous fluid flow past a contaminated viscous fluid
sphere in a porous medium:

i) The numerical results of the coefficient of the drag (CD) for the differing
porosity parameter (Γ), the viscosity ratio (µ)at the fixed slip parameter (s) for

Fig. 3. The coefficient of drag (CD) for viscous fluid w.r.t. viscosity ratio (µ) for varying
porosity parameter (Γ) at a fixed slip parameter (s) = 5, cap value x0 = 0.
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Table 1. The coefficient of drag (CD) for viscous fluid w.r.t. viscosity ratio (µ) for varying
porosity parameter (Γ) at a fixed slip parameter (s) = 5, cap value x0 = 0.

Γ
µ

8 16 24 32
2 13.7459 35.9803 66.0365 105.2451
4 25.3372 72.2851 133.7216 212.7528
6 37.0578 108.6189 201.6537 320.6603
8 48.8064 144.9614 269.6692 428.7095

10 60.5656 181.3077 337.7229 536.8249
12 72.3300 217.6559 405.7971 644.9767
14 84.0973 254.0053 473.8837 753.1506
16 95.8664 290.3555 541.9784 861.3390

Eq. (2.21) at an assumed cap value x0 = 0 are plotted in Fig. 3 and tabulated
in Table 1, respectively. It is noticed that as the viscosity ratio (µ) value rises
the coefficient of drag (CD) also rises. This is because that as (µ) increases, the
viscosity for internal fluid increases and hence the friction resistance of internal
fluid increases and hence the drag increases.

ii) The numerical results of the coefficient of drag (CD) for differing slip
parameter (s), the porosity parameter (Γ) at the fixed viscosity ratio (µ), are
plotted for Eq. (2.21) at an assumed cap value x0 = 0 and tabulated in Fig. 4
and Table 2, respectively. It was noticed that as the porosity parameter value (Γ)

Fig. 4. The coefficient of drag(CD)for viscous fluid w.r.t. porosity parameter (Γ) for varying
slip parameter (s) at fixed value µ = 5, cap value x0 = 0.
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Table 2. The coefficient of drag (CD) for viscous fluid w.r.t. porosity parameter (Γ) for
varying slip parameter (s) at fixed value µ = 5, cap value x0 = 0.

s
Γ

8 16 24 32
2 34.0014 37.5536 39.4587 40.6469
4 92.2715 105.0179 113.3793 119.2966
6 166.7316 186.1232 200.5041 211.6837
8 263.6211 286.8170 305.2266 320.4025
10 385.4661 410.8650 431.8227 449.7321
12 533.1957 559.9422 582.5415 602.2994
14 707.1922 734.8102 758.5060 779.5376
16 907.6320 935.8414 960.2973 982.2304

rises the coefficient of drag (CD) also rises. This is because as (Γ) increases, the
value of k decreases and hence the fluid behaves like a solid which means that
the permeability of the medium decreases. Hence the fluid requires more force
to pass through the medium and hence the drag increases.

Fig. 5. The coefficient of drag (CD) for viscous fluid for varying slip parameter (s), varying
cap value (x0) at a fixed value viscosity ratio (µ) = 1, porosity parameter (Γ) = 1.

iii) The numerical results of the coefficient of drag (CD) for the differing slip
parameter (s), the cap angle (x0) at the fixed viscosity ratio (µ), the porosity
value is plotted for Eq. (2.21) Fig. 5. It was noticed that as the slip parameter
value (s) rises the coefficient of drag (CD) also increases.

Case 2: the uniform flow of CSF past a contaminated CSF sphere in a porous
medium:



Stokes flow past a contaminated fluid sphere. . . 271

The inside and outside stream functions of Eq. (3.6) to Eq. (3.9) are cal-
culated using the BC’s from (3.10)–(3.14). The drag force (Dg2) of CSF past
a contaminated CSF in a porous medium with slip conditions computed as given
in Eq. (3.19).

Fig. 6. The coefficient of drag (CD) for CSF w.r.t porosity parameter (Γ) for varying
viscosity ratio (µ) at fixed s = 5, e = 2, cap value x0 = 0.

The numerical results of the coefficient of drag (CD) for the differing viscosity
ratio (µ), the porosity parameter (Γ) at the fixed slip parameter (s) and the
couple stress parameter (e) are plotted for Eq. (3.19) a cap value x0 = 0 and
tabulated in Fig. 6 and Table 3, respectively. It was noticed that as the porosity

Table 3. The coefficient of drag (CD) for CSF w.r.t. porosity parameter (Γ) for varying
viscosity ratio (µ) at fixed s = 5, e = 2, cap value x0 = 0.

µ
Γ

8 16 24 32
2 0.4872 0.9193 1.3503 1.7810
4 10.2830 20.5622 30.8414 41.1205
6 23.8324 47.6640 71.4956 95.3273
8 42.5727 85.1452 127.7176 170.2901
10 66.6066 133.2131 199.8196 266.4261
12 95.9583 191.9166 287.8748 383.8331
14 130.6360 261.2721 391.9081 522.5441
16 170.6432 341.2864 511.9296 682.5728
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parameter value (Γ) increases the coefficient of drag (CD) also rises. This is
because as (Γ) increases, the value of k decreases and hence the fluid behaves
like a solid which means that the permeability of the medium decreases. Hence
the fluid requires more force to pass through the medium and hence the drag
increases.

Case 3: the numerical results of the coefficient of drag (CD) for the fixed
porosity parameter (Γ = 8), the slip parameter (s) at the fixed viscosity ratio
(µ) and the couple stress parameter (e) are plotted and tabulated in Fig. 7 and
Table 4. It is noticed that for viscous fluid flow, with a rise in slip parameter rises
(s) values, the coefficient of drag (CD) also rises and for CSF fluid flow, with
a rise in slip parameter (s) the coefficient of drag (CD) decreases. Also observed
that with couple stress fluid flows the coefficient of drag values are lower than
the viscous fluid flow. This is because shear stress contains terms from couple
stress components, which will decrease the effect of shear force.

Fig. 7. a) Viscous coefficient of drag (CD) and b) couple stress coefficient of drag (CD)
w.r.t. (s) slip parameter for fixed porosity parameter (Γ = 8) at fixed µ = 5, e = 2.

Table 4. a) viscous coefficient of drag (CD) and b) couple stress coefficient of drag (CD)
w.r.t. (s) slip parameter for fixed porosity parameter (Γ = 8) at fixed µ = 5, e = 2.

s
CD 1 5 10 15 20 25 30 35 40
a 23.5739 25.7267 26.6606 27.0987 27.3532 27.5196 27.6368 27.7239 27.7911
b 13.0239 12.5897 12.0088 11.3805 10.699 9.9569 9.1459 8.256 7.2748

5. Conclusions

In this study, we acquired an analytical solution for a uniform flow of the CSF
flow over a contaminated couple stress fluid sphere placed in a porous medium
with the slip condition on its surface. In addition, an exact solution of viscous
fluid flow through a contaminated sphere of viscous fluid is also obtained. The
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internal and external stream functions, as well as the drag force for above cases
were computed analytically. Results of special cases for the non-porous medium
of a solid sphere without the slip condition, i.e., when s → ∞, solid sphere
when µ → ∞, no porous region, i.e., Γ1 = 0 are reduced, which is consistent
with data in literature.

It was observed that:
• In viscous fluid and couple stress fluid cases with an increase in the viscosity

ratio, the slip parameter (s), the porous parameter there is an increase in
the coefficient of drag values.
• The coefficient of drag values for a uniform flow of the viscous fluid over

a contaminated viscous fluid sphere in a porous medium with the slip
condition is superior to that of a CSF flow.

The above findings will help for further study with other non-Newtonian fluids
with no-slip or slip or stress jump conditions, heat andmass transfer, MHD effects,
etc., which have physical applications in biological research in industry.
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