PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Zirconium as an Alloying Additive on the Microstructure and Properties of AlSi9Mg Alloy Cast in Sand Moulds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to select the optimal content of zirconium introduced as an alloying additive to obtain the best strength properties of Al-Si alloy. A technically important disadvantage is the tendency of silumins to form a coarse-grained structure that adversely affects the mechanical properties of castings. To improve the structure, modification processes and alloying additives are used, both of which can effectively refine the structure and thus increase the mechanical properties. According to the Hall-Petch relationship, the finer is the structure, the higher are the mechanical properties of the alloy. The proposed addition of zirconium as an alloying element has a beneficial effect on the structure and properties of silumins, inhibiting the grain growth. The starting material was an aluminium-silicon casting alloy designated as EN AC-AlSi9Mg (AK9). Zirconium (Zr) was added to the alloy in an amount of 0.1%, 0.2%, 0.3%, 0.4% and 0.5% by weight. From the modified alloy, after verification of the chemical composition, samples were cast into sand moulds based on a phenolic resin. The first step in the research was testing the casting properties of alloys with the addition of Zr (castability, density, porosity). In the next step, the effect of zirconium addition on the structure and mechanical properties of castings was determined.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 23 poz., il., tab., wykr.
Twórcy
  • Łukasiewicz Research Network – Krakow Institute of Technology, Krakow, Poland
  • Łukasiewicz Research Network – Krakow Institute of Technology, Krakow, Poland
autor
  • Łukasiewicz Research Network – Krakow Institute of Technology, Krakow, Poland
Bibliografia
  • [1] Singh, M., Mondal, P.D., Jha, A.K., Das, S. & Yegneswaran, A.H. (2001). Preparation and properties of cast aluminium alloy-sillimanite particle composite. Composites Part A: Applied Science and Manufacturing. 32(6), 787-795. https://doi.org/10.1016/S1359-835X(00) 00187-1.
  • [2] Mueller, M.G., Fornabaio, M., Zagar, G. & Mortensen, A. (2016). Microscopic strength of silicon particles in an aluminium-silicon alloy. Acta Materialia. 105, 165-175, https://doi.org/10.1016/j.actamat.2015.12.006.
  • [3] Perez, N. (2016). Electrochemistry and Corrosion Science, Springer International Publishing, ISBN: 3-319-24847-2.
  • [4] Pietrowski, S. (2007). Complex silumins. Journal of Achievements in Materials and Manufacturing Engineering. 24(1), 101-105.
  • [5] Anantha Padmanaban, D. & Kurien, G. (2012). Silumins: The Automotive Alloys. Advanced Materials and Processes. 170(3), 28-30. DOI: https://doi.org/10.1007/ 978-981-13-1780-4_28.
  • [6] Binczyk, F., Piątkowski, J. & Szymszal, J. (2001). The crystallisation eutectic of the hypereutectic silumin. Archives of Foundry. 1 (2/2), 28-33.
  • [7] Cherepanov, A.I., Kukartsev, V.A., Tynchenko, V.S., Korpacheva, L.N., Makarchuk, I.Yu. & Dremin, R.S. (2020). Investigation of the effect of various silicon contents on the crystallization pattern and the composition of silumin phases. Journal of Physics: Conference Series. 1582. DOI: 10.1088/1742-6596/1582/1/012021.
  • [8] Knych, T. (2014). Aluminium alloys with zirconium additions, in the range from 0.05 to 0.32%, intended for applications in the overhead electrical power engineering. Archives of Metallurgy and Materials. 59(1), 339-343. DOI: 10.2478/amm-2014-0056.
  • [9] Wuhua, Y. & Zhenyu, L. (2011). Effect of Zr addition on properties of Al-Mg-Si aluminium alloy used for all aluminium alloy conductor. Materials & Design. 32(8-9), 4195-4200. https://doi.org/10.1016/ j.matdes.2011.04.034.
  • [10] Wu, Y. (2013). Effect of texture evolution on mechanical properties of near eutectic Al-Si-Mg alloy with minor addition of Zr/V during hot extrusion. Materials & Design. 57, 416-420. https://doi.org/10.1016/ j.matdes.2013.12.068.
  • [11] Bolibruchová, D., Kuriš, M., Matejka, M., Major-Gabryś, K. & Vicen, M. (2021). Effect of Ti on selected properties of AlSi7Mg0.3Cu0.5 alloy with constant addition of Zr. Archives of Metallurgy and Materials. 66(1), 65-72. DOI: 10.24425/amm.2021.134760.
  • [12] Tsivoulas, D. & Robson, J.D. (2015). Heterogeneous Zr solute segregation and Al3Zr dispersoid distributions in Al-Cu-Li alloys. Acta Materialia. 93, 73-86. DOI: 10.1016/j.actamat.2015.03.057.
  • [13] Kantoríková, E., Kuriš, M. & Pastirčák, R. (2021). Heat treatment of AlSi7Mg0.3 aluminium alloys with increased zirconium and Titanium content. Archives of Foundry Engineering. 21(2), 89-93. DOI: 10.24425/afe.2021 .136103.
  • [14] Hernandez-Sandoval, J., Abdelaziz, M.H., Samuel, A.M., Doty, H.W. & Samuel, F.H. (2020). Effect of Zr addition and aging treatment on the tensile properties of Al-Si-Cu-Mg cast alloys. Advanced Aluminium Composites and Alloys. IntechOpen. DOI: 10.5772/intechopen.92814.
  • [15] Siemińska–Jankowska, B. & Pietrowski S. (2003). The effects of temperature on strength of the new piston aluminium materials. Journal of KONES Internal Combustion Engines. 10(3-4), 237-250.
  • [16] Sepehrbanda, P. (2005). Effect of Zr addition on the aging behavior of A319 aluminium cast alloy. Scripta Materialia. 52(4), 253-257. https://doi.org/10.1016/j.scriptamat.2004. 10.025.
  • [17] Harunal, M. (1996). Effect of element additions on wear property of eutectic aluminium-silicon alloys. Wear. 194(1-2), 54-59. https://doi.org/10.1016/0043-1648(95)06707-8.
  • [18] Elhadari, H.A. (2011). Tensile and fatigue properties of a cast aluminium alloy with Ti, Zr and V additions. Materials Science and Engineering A. 528, 8128-8138. DOI: doi:10.1016/j.msea.2011.07.018.
  • [19] Knych, T., Piwowarska-Uliasz, M. & Uliasz, P. (2014). Aluminium alloys with zirconium additions, in the range from 0.05 to 0.32%, intended for applications in the overhead electrical power engineering. Archives of Metallurgy and Materials. 59(1), 339-343. DOI: 10.2478/amm-2014-0056.
  • [20] Janovszky. D. (2020). Strengthening of nanocrystalline Al with Al3Zr core-shell structure. Metals. 10(9), 1144. DOI: 10.3390/met10091144.
  • [21] Tian, S., Li, J., Zhang, J., Wulabieke, Z. & Lv, D. (2019). Effect of Zr and Sc on microstructure and properties of 7136 aluminium alloy. Journal of Materials Research and Technology. 8(5), 4130-4140. https://doi.org/10.1016/j. jmrt.2019.07.022.
  • [22] Voorhees, P.W. (2006). Scandium overtakes zirconium, Nature Materials. 5, 435-436.
  • [23] Knipling, K.E., Karnesky, R.A., Lee, C.P., Dunand, D.C. & Seidman, D.N. (2010). Precipitation evolution in Al-0.1Sc, Al-0.1Zr and Al-0.1Sc-0.1Zr (at. %) alloys during isochronal aging. Acta Materialia. 58(15), 5184-5195. https://doi.org/10.1016/j.actamat.2010.05.054.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79ee72be-196d-4f9c-b0ca-35ccebe0c693
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.