PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different Responses of the Radial Growth of Conifer Species to Increasing Temperature along Altitude Gradient : Pinus tabulaeformis in the Helan Mountains (Northwestern China)

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Linking the response of tree growth to global warming is a key to fully appreciating the impact of climate change on forests. To examine the impacts of temperature and precipitation on tree growth, we studied the radial growth of Pinus tabulaeformis along an altitude gradient from 2032 m a.s.l. to 2361 m a.s.l. on the Helan Mountains, which is almost the northwestern limit of P. tabulaeformis distribution in China. The results showed that, radial growth of P. tabulaeformis decreased significantly (P <0.05) at the low altitude (2032 m a.s.l.) and remained almost steady at the middle and high altitude (2200 m a.s.l. and 2361 m a.s.l.) during the past decades, which was attributed to different climate-radial growth relationships at different altitudes. Total precipitation from the previous July to the current June was an important and effective climatic factor for radial growth at all altitudes. Radial growth was negatively correlated with the mean temperature of the current March at the low altitude and was positively and negatively correlated with the mean temperature of the previous October and the current July at the high altitude, respectively. Increasing temperature of the March under the context of global warming was the main reason for growth reduction at the low altitude. Radial growth at the middle and high altitudes didn't suffer from global warming. It was inferred that conifers at low altitudes of the species' dry distribution limit were more vulnerable to global warming. To cope with possible intensified drought in the growing season and growth reduction in the future, thinning and afforestation should be carried out in the forests, especially at low altitudes.
Rocznik
Strony
509--525
Opis fizyczny
Bibliogr. 69 poz., fot., mapa, tab., wykr.
Twórcy
autor
  • College of Resources Science and Technology, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • College of Resources Science and Technology, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
  • State Key Laboratory of Earth Surface Process and Resource Ecology, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • College of Resources Science and Technology, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
autor
  • College of Resources Science and Technology, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
  • Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
autor
  • Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston MA, 02215, USA
Bibliografia
  • [1] Affolter P., Buntgen U., Esper J., Rigling A., Weber P., Luterbacher J., Frank D. 2010 — Inner Alpine conifer response to 20th century drought swings — Eur. J. Forest Res. 129: 289–298.
  • [2] Allen C. D., Breshears D. D., Mcdowell N. G. 2015 — On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene — Ecosphere, 6: art129; 121–155.
  • [3] Andreu L., Gutiérrez E., Macias M., Ribas M., Bosch O., Camarero J. J. 2007 — Climate increases regional tree-growth variability in Iberian pine forests — Glob. Change Biol. 13: 804–815.
  • [4] Cai Q. F., Liu Y. 2007 — January to August temperature variability since 1776 inferred from tree-ring width of Pinus tabulaeformis in Helan Mountain — J. Geogr. Sci. 17: 293–303.
  • [5] Cai Q. F., Liu Y. 2013 — Climatic response of three tree species growing at different elevations in the Lüliang Mountains of Northern China — Dendrochronologia, 31: 311–317.
  • [6] Cai Q. F., Liu Y., Bao G. A., Lei Y., Sun B. 2010 — Tree-ring-based May–July mean temperature history for Luliang Mountains, China, since 1836 — Chinese Sci. Bull. 55: 3008–3014.
  • [7] Cailleret M., Davi H. 2011 — Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient — Trees, 25: 265–276.
  • [8] Camarero J. J., Gazol A., Sangüesa-Barreda G., Oliva J., Vicente-Serrano S. M. 2015 — To die or not to die: early warnings of tree dieback in response to a severe drought — J. Ecol. 103: 44–57.
  • [9] Candel-Perez D., Linares J. C., Vinegla B., Lucas-Borja M. E. 2012 — Assessing climate-growth relationships under contrasting stands of co-occurring Iberian pines along an altitudinal gradient — Forest Ecol. Manag. 274: 48–57.
  • [10] Chen F., Yuan Y., Wei W. 2011 — Climatic response of Picea crassifolia tree-ring parameters and precipitation reconstruction in the western Qilian Mountains, China — J. Arid Environ. 75: 1121–1128.
  • [11] Chen H. Y. H., Yong L. 2015 — Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests — Glob. Change Biol. 21: 3675–3684.
  • [12] Cook E. R., Kairiukstis L. A. 1990 — Methods of dendrochronology: applications in the environmental sciences — Dordrecht, Netherlands, Kluwer Academic Publishers, pp. 98–120.
  • [13] D'Arrigo R., Jacoby G., Frank D., Pederson N., Cook E., Buckley B., Nachin B., Mijiddorj R., Dugarjav C. 2001 — 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine — Geophys. Res. Lett. 28: 543–546.
  • [14] Deslauriers A., Beaulieu M., Balducci L., Giovannelli A., Gagnon M. J., Rossi S. 2014 — Impact of warming and drought on carbon balance related to wood formation in black spruce — Ann. Bot-London, 114: 335–345.
  • [15] Dulamsuren C., Hauck M., Bader M., Osokhjargal D., Oyungerel S., Nyambayar S., Runge M., Leuschner C. 2009 — Water relations and photosynthetic performance in Larix sibirica growing in the forest-steppe ecotone of northern Mongolia — Tree Physiol. 29: 99–110.
  • [16] Dulamsuren C., Hauck M., Leuschner C. 2010 — Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia — Glob. Change Biol. 16: 3024–3035.
  • [17] Fang K., Frank D., Gou X., Liu C., Zhou F., Li J., Li Y. 2013 — Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings: An introduction to an HHT-based method — Global Planet Change, 107: 109–118.
  • [18] Fang K., Gou X., Chen F., Liu C., Davi N., Li J., Zhao Z., Li Y. 2012 — Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China — Global Planet Change, 80: 190–197.
  • [19] Fritts H. 2012 — Tree rings and climate — London, Academic Press, pp. 190–200.
  • [20] Galiano L., Martcnez-Vilalta J., Lloret F. 2010 — Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species — Ecosystems, 13: 978–991.
  • [21] Gao L. L., Gou X. H., Deng Y., Liu W. H., Yang M. X., Zhao Z. Q. 2013 — Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China — Trees-Struct. Funct. 27: 379–388.
  • [22] Gao S. Y., Lu R. J., Qiang M. R., Hasi E., Zhang D. S., Chen Y., Xia H. 2005 — Reconstruction of precipitation in the last 140 years from tree ring at south margin of the Tengger Desert, China — Chinese Sci. Bull. 50: 2487–2492.
  • [23] Herguido E., Granda E., Benavides R., Garcia-Cervigon A. I., Camarero J. J., Valladares F. 2016 — Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem — Forest Ecol. Manag. 363: 149–158.
  • [24] Herrero A., Rigling A., Zamora R. 2013 — Varying climate sensitivity at the dry distribution edge of Pinus sylvestris and P. nigra — Forest Ecol. Manag. 308: 50–61.
  • [25] Holmes R. L. 1983 — Computer-assisted quality control in tree-ring dating and measurement — Tree-ring Bull. 43: 69–78.
  • [26] IPCC 2013 — Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change — Cambridge, Cambridge University Press, pp. 1–15.
  • [27] Ji M., Zhang X., Wang Z., Zhang Q., Deng J. 2011 — Intra-versus inter-population variation of cone and seed morphological traits of Pinus tabulaeformis carr (In: Northern China: Impact of climate-related conditions — Pol. J. Ecol. 59: 717–727.
  • [28] Jiang Y., Kang M. Y., Liu S., Tian L. S., Lei M. D. 2000 — A study on the vegetation in the east side of Helan Mountain — Plant Ecol. 149: 119–130.
  • [29] Kuptz D., Fleischmann F., Matyssek R., Grams T. E. 2011 — Seasonal patterns of carbon allocation to respiratory pools in 60‐yr‐old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole‐tree stable carbon isotope labeling — New Phytol. 191: 160–172.
  • [30] Leal S., Melvin T. M., Grabner M., Wimmer R., Briffa K. R. 2007 — Tree-ring growth variability in the Austrian Alps: the influence of site, altitude, tree species and climate — Boreas, 36: 426–440.
  • [31] Liang E., Eckstein D., Liu H. 2008 — Climate-growth relationships of relict Pinus tabulaeformis at the northern limit of its natural distribution in northern China — J. Veg. Sci. 19: 393–406.
  • [32] Linares J. C., Tíscar P. A. 2010 — Climate change impacts and vulnerability of the southern populations of Pinus nigra subsp. salzmannii — Tree Physiol. 30: 795–806.
  • [33] Linares J. C., Tiscar P. A. 2011 — Buffered climate change effects in a Mediterranean pine species: range limit implications from a tree-ring study — Oecologia, 167: 847–859.
  • [34] Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M. 2010 — Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems — Forest Ecol. Manag. 4: 698–709.
  • [35] Littell J. S., Peterson D. L., Tjoelker M. 2008 — Douglas-Fir Growth in Mountain Ecosystems: Water Limits Tree Growth from Stand to Region — Ecol. Monogr. 78: 349–368.
  • [36] Liu H., Williams A. P., Allen C. D., Guo D., Wu X., Anenkhonov O. A., Liang E., Sandanov D. V., Yin Y., Qi Z. 2013 — Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia — Glob. Change Biol. 19: 2500–2510.
  • [37] Liu Y., Wang Y., Li Q., Song H., Zhang Y., Yuan Z., Wang Z. 2014 — A tree-ring-based June-September mean relative humidity reconstruction since 1837 from the Yiwulü Mountain region, China — Int. J. Climatol. 35: 1301–1308.
  • [38] Lo Y. H., Blanco J. A., Seely B., Welham C., Kimmins J. P. 2010 — Relationships between climate and tree radial growth in interior British Columbia, Canada — Forest Ecol. Manag. 259: 932–942.
  • [39] Lu J. X., Xu J. M., Wu Y. Q., Li X. J., Evans R., Downes G. M. 2015 — Climatic signals in wood property variables of Picea Crassifolia — Wood Fiber Sci. 47: 131–140.
  • [40] Lu R. J., Gao S. Y., Wang Y. J., Ma Y. Z., Qiang M. R., Zhang D. S. 2013 — Tree-ring based drought reconstruction at the northwestern margin of monsoon region of China since 1862 — Quatern. Int. 283: 93–97.
  • [41] Magnuszewski M., Bijak S., Orozumbekow A., Howe B., Musuraliev K., Zasada M., Bronisz K., Bronisz A. 2015 — Different growth patterns of Picea schrenkiana subsp. tianshanica (Rupr.) Bykov and Juglans regia L. coexisting under the same ecological conditions in the Sary-Chelek Biosphere Reserve in Kyrgyzstan — Dendrobiology, 73: 11–20.
  • [42] Marcora P., Hensen I., Renison D., Seltmann P., Wesche K. 2008 — The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation — Divers. Distrib. 14: 630–636.
  • [43] Oberhuber W. 2004 — Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone — Tree Physiol. 24: 291–301.
  • [44] Palombo C., Battipaglia G., Cherubini P., Chirici G., Garfi V., Lasserre B., Lombardi F., Marchetti M., Tognetti R. 2014 — Warming-related growth responses at the southern limit distribution of mountain pine (Pinus mugo Turra subsp. mugo) — J. Veg. Sci. 25: 571–583.
  • [45] Peng J., Gou X., Chen F., Li J., Liu P., Zhang Y. 2008 — Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau — Dendrochronologia, 26: 87–96.
  • [46] Rinn F. 2003 — TSAPWin: time series analysis and presentation for dendrochronology and related applications — Frank Rinn, Heidelberg, Germany.
  • [47] Rossi S., Girard M. J., Morin H. 2014 — Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production — Glob. Change Biol. 20: 2261–2271.
  • [48] Sánchezsalguero R., Navarrocerrillo R. M., Camarero J. J., Fernándezcancio Á. 2012 — Selective drought-induced decline of pine species in southeastern Spain — Climatic Change, 113: 767–785.
  • [49] Savva Y., Oleksyn J., Reich P. B., Tjoelker M. G., Vaganov E. A., Modrzynski J. 2006 — Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland — Trees-Struct Funct. 20: 735–746.
  • [50] Schweingruber F. H. 1988 — Tree rings-basics and applications of dendrochronology — Springer, Netherlands.
  • [51] Shi J. F., Li J. B., Cook E. R., Zhang X. Y., Lu H. Y. 2012 — Growth response of Pinus tabulaeformi to climate along an elevation gradient in the eastern Qinling Mountains, Central China — Clim. Res. 53: 157–167.
  • [52] Shi J. F., Liu Y., Vaganov E. A., Li J. B., Cai Q. F. 2008 — Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north central China: A case study of Pinus tabulaeformis — J. Geophys. Res- Atmos. 113: 341–356.
  • [53] Sidor C. G., Popa I., Vlad R., Cherubini P. 2015 — Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania) — Trees-Struct. Funct. 29: 985–997.
  • [54] Song H., Liu Y. 2011 — PDSI variations at Kongtong Mountain, China, inferred from a 283- year Pinus tabulaeformis ring width chronology — J. Geophys. Res-Atmos. 116: 898–908.
  • [55] Splechtna B. E., Dobry J., Klinka K. 2000 — Tree-ring characteristics of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in relation to elevation and climatic fluctuations — Ann. For. Sci. 57: 89–100.
  • [56] Subedi N., Sharma M. 2013 — Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada — Glob. Change Biol. 19: 505–516.
  • [57] Vitas A. 2004 — Tree rings of Norway spruce (Picea abies (L.) Karsten) in Lithuania as drought indicators: dendroecological approach — Pol. J. Ecol. 52: 201–210.
  • [58] Wang H., Shao X. M., Jiang Y., Fang X. Q., Wu S. H. 2013 — The impacts of climate change on the radial growth of Pinus koraiensis along elevations of Changbai Mountain in northeastern China — Forest Ecol. Manag. 289: 333–340.
  • [59] Wang T., Ren H. B., Ma K. P. 2005 — Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China — Trees- Struct. Funct. 19: 735–741.
  • [60] Wigley T. M., Briffa K. R., Jones P. D. 1984 — On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology — J. Clim. Appl. Meteorol. 23: 201–213.
  • [61] Wu X. C., Liu H. Y., Wang Y. F., Deng M. H. 2013 — Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China — Environ. Res. Lett. 8: 024016.
  • [62] Xu Z., Lin Z., Wang Y. 1993 — Some problems of the Helan Mountain climate — Acta Geographica Sinica, 48: 171–176.
  • [63] Yang B., He M. H., Melvin T. M., Zhao Y., Briffa K. R. 2013 — Climate Control on Tree Growth at the Upper and Lower Treelines: A Case Study in the Qilian Mountains, Tibetan Plateau — Plos One, 8: E69065.
  • [64] Yang B., Qin C., Brauning A., Burchardt I., Liu J. J. 2011 — Rainfall history for the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings — Int. J. Climatol. 31: 1166–1176.
  • [65] Yu D. P., Liu J. Q., Lewis B. J., Li Z., Zhou W. M., Fang X. M., Wei Y. W., Jiang S. W., Dai L. M. 2013 — Spatial variation and temporal instability in the climate-growth relationship of Korean pine in the Changbai Mountain region of Northeast China — Forest Ecol. Manag. 300: 96–105.
  • [66] Yu L., Huang L., Shao X. M., Xiao F. J., Wilmking M., Zhang Y. X. 2015 — Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades — Plos One, 10.
  • [67] Zhang F., Gou X., Liu W., Levia D. F., Li Y. 2013 — Individual and time-varying tree-ring growth to climate sensitivity of Pinus tabuliformis Carr. and Sabina przewalskii Kom. in the eastern Qilian Mountains, China — Trees-Struct. Funct. 27: 359–370.
  • [68] Zhang F. W., Li Y. N., Cao G. M., Wang S. P., Zhao X. Q., Du M. Y., Wang Q. X. 2011 — Response of alpine plant community to simulated climate change: two-year results of reciprocal translocation experiment (Tibetan Plateau) — Pol. J. Ecol. 59: 741–751.
  • [69] Zhang Y. X., Wilmking M., Gou X. H. 2009 — Changing relationships between tree growth and climate in Northwest China — Plant Ecol. 201: 39–50.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79eb59cd-ca9d-414f-89b0-98917e1c7a1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.