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Abstract The two-parameter tempered Hermite field modifies the power law kernel
in the moving average representation of the Hermite field by adding an exponential
tempering. This paper develops the basic theory of two-parameter tempered Hermite
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1. Introduction Let (W(x,y), x,Y € R) be a two-parameter Brownian
field (see Definition 2.1 below). The two-parameter Hermite random fields or
Hermite sheets of order £ > 1 are stochastic processes defined as multiple
Wiener-1t6 integrals of order k& with respect to W.

/
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where s,t € R? and H = (Hy,Hs) € (%,1)2 (the prime " on the integral
indicates that one does not integrate on the hyperplanes (z;,y;) = (x},;),
i # j). Hermite fields are self-similar processes with stationary increments
(see 8] for more details).

From expression (1), it is possible to note that for one parameter case, we
recover the Hermite process which represents a family that has been studied
by several authors see, e.g., [15], [19] and [16].

F. Sabzikar [18] has introduced a new class of one parameter stochastic
processes, called tempered Hermite process. He has modified the kernel of
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the one-parameter Hermite process Z¥# multiplying it by an exponential
tempering factor A > 0. This process has the following time domain repre-
sentation

1

!t k
1,1-H
//H s—y) 2 )e—MS—wH)dsB(dyl)...B(dyk), (2)

where B = {B(t), t € R} is a real-valued standard Brownian motion, H > %
and A > 0. It has been shown that this process has stationary increments but
it is not self-similar.

The natural question in the present work is how to extend this class of
processes to the two-parameter case and how to build the process that will be
called the “two-parameter tempered Hermite field" defined either as a natural
extension of the tempered Hermite process (2) to two dimensional random
fields or as a modification of the kernel of the Hermite field (1) multiplying it
by an exponential factor A = (A1, X2) € (0,00)? such that this random field
is well defined for Hurst parameter H = (Hy, Hs) € (3, 00)%.

The remainder of the paper is organized as follows. In Section 2 we recall
the concept of multiple Wiener-1t6 integrals with respect to Brownian field
and we present its properties. In Section 3, we introduce the main objective
of this study which is the so-called tempered Hermite field, and derive some
of its basic properties. In section 4, we study the Hermitian random measures
on (R% B(R?)) and we give the spectral representation of the two-parameter
tempered Hermite field. In Section 5 we prove some basic results on the two-
parameter tempered fractional calculus, which will be needed in the sequel.
Finally, in Section 6 we apply the results of Section 5 to construct a suitable
theory of stochastic integration for two-parameter tempered Hermite field of
order one.

2. Multiple Wiener-1t6 integrals with respect to the Brownian
field In this section, we briefly review the theory of multiple Wiener-It6 inte-
grals with respect to the Brownian field. For more details, we refer the reader
to [L1] and [12]. Let us first recall the definition of the standard Brownian
field.

DEFINITION 2.1 The two-parameter standard Brownian field is the centered
Gaussian process {W(x,y) oz, y € R} such that W(0,0) = 0 and its
covariance function is given by

E[W (s, t)W (u,v)] = (s Au)(t Av).

We can now introduce the multiple Wiener-1t6 integrals with respect to the
Brownian field. Let f : (R?)* — R be a deterministic function and let us
denote by [ };V (f) the k-fold multiple Wiener-Ito6 integrals of f with respect to
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the standard two-sided Brownian field (W (z,y))syer. This integral has the
following form:

RY(f) = /(RZ)kf((xlayl)a($27y2)7"~7(xk7yk)) (3)
X dW(xl, yl)dW(xQ, yz) . dW(xk, yk)

The actual definition first defines I}V (f) for elementary functions in a nat-
ural way, and then extends I}V (f) to f € L*((R*)*) so that the following
properties hold:

° I}C/V is linear,

. I,L/V(f) = I,L/V(f), where f is the symmetrization of f defined by
JE((931,?J1)7 (Tr, Yr)) ,Zf Lo(1)s ya(l) (z a(k)7ya(k)))7

o running over all permutations of {1,..., k},

e multiple Wiener integrals satisfy the following isometry and orthogo-
nality properties

k'(f, @LQ ((Rz)k) ifk=F

E[LY (I (9)] = .
0 if k£ K,

where (f, ) 2 ((®2)%) indicates the standard inner product in L? ((R?)").

The prime ’ on the integral (3) indicates that one does not integrate on the
hyperplanes (z;,y;) = (z4,y;), @ # j. This ensures that E[IZV(f)] =0.

Next, we will present the generalized stochastic Fubini theorem with re-
spect to the two-parameter standard Brownian field. This theorem states that
one can interchange Lebesgue integrals and multiple Wiener-It6 stochastic in-
tegrals with respect to the Brownian field.

Let k € N, the mixed Lebesgue space and its norm of a function f : R? x
(R%)k — R are:

P " P
(K. :( f(a,byur, ... up)|P duy . . . duy dadb)
R2 R2k
Ly pa(R? x B%) = {f : R? x (R)* = R, Borelian, || fllp, p < o}.

Let us remark that if f € £12(R?* x R?) using the Cauchy-Schwartz’ inequal-
ity:

12, = (/R%( R2|f(a,b,u1,...uk)|dadb>2du1...duk>
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= /// |f(a1,br,uy, ... ug)|f(az,bo,ug, ... uy)|
R2 JR2 RQk
du1 e dll]C daldbldagdbg

1£13.1.
this yields the inclusion L£21(R? x R?%) C £; 2(R?* x R?).

IN

THEOREM 2.2 Let f € L31(R? x R?) and (W(x,y), z,y € R) be a two-
parameter standard Brownian field. Then almost surely:

/]RZ (/R% f(a,b, (x1,91),---, (:L’myk)) dw(z1,y1) - .dW(xk,yk)) da db

= / (/ f(a, b, (1,Y1)s .- (xk,yk)) dadb)dW(ml,yl) AW (xg, y)-
Rr2k \ JR2 "

PrOOF The proof of this theorem is similar to that of [15, Theorem 2.1]
where the function is defined on R? x (R2)*.
The map

Yl :f'_> </ f(avb) (xluyl)v"'v(xkvyk)) dW(J:luyl)dW(xkvyk)) da db
R2 R2k

is a continuous linear map on the step functions in L5 1(R? x R?¥) taking its
values in L?(€). The set of these step functions is dense in Lo 1(R? x R?*) so
this map admits a unique continuous linear extension on £271(R2 x R2F).
Let the map

Yo: f— (/ f(a,b, (xl,yl),...,(xk,yk)) dadb)dW(ml,yl)...dW(xk,yk).
RQk R2

It is a linear continuous map on Lo 1(R? x R?¥) C £ o(R?* x R?) with a norm
1 from £1 2(R* x R?) to L?(Q) so ‘a fortiori’ on Lg1(R? x R%):

HY2||§ = \/R?k (42 f(a,bv (xhyl)a"'a(xkvyk)) dadb)QdW(xl,yl)dW(xkayk)

= [IfI32

< I3
Finally, the maps Y;, ¢ = 1, 2, are well defined and coincide on the step
functions. ]

3. Two-parameter tempered Hermite field Now, we are going to
introduce the main object of this paper: the two-parameter tempered Hermite
random field or tempered Hermite sheet. We give its definition and derive its
basic properties. We give by the following lemma which states that our process
in Definition 3.2 below is well defined.
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LEMMA 3.1 Let k € N*, Hy, Hy > 1/2 and A1, A2 > 0. The function
hHl’HZ’/\l’/\2 ((z1,91)s -5 (T, Yk))
/ / a—xj (%Jrl_’fl)e_’\l(a_%) (b —yj) Rt e 2(0=¥)+ dq db

()

is well defined in L?((R?)").

PRrROOF The proof is similar to that of [4, Theorem 3.5] and [18, Lemma 1].

To show that hfé’H%)‘l’)‘Q ((z1,91),- .., (xk, yr)) is square integrable over (R?)*,
we write

o P ), ) dord o

t s t s k 1, 1-H 1— H2
/(Rz)k [/O /0 /o /0 H(alij)+(2+ " )67/\1((117%)*((71* )+( 2" :
j=1
17kH1
X

(az—xz;) 4 (b2 _ yj>;(%+ lkaz )e—)\z(b2—yj)+

(1
e—>\2(51—’!/j)+(a2 _ mj)+(2
daldbldazdb2‘| dl‘ldyl e dﬁkdyk

t t s s k ,(l+1*H1)
:22/ dal/ da?/ dbl/ dby / H(al —mj)+ 2 R ) o Ai(ar—x;) 4
0 ay 0 by (R2)k =1

(bl _y]) (3 +1 kHZ) 7>\2(b1 ”J)+(a2 _x])+(2+17kH1)e,)\l(agf:rj)Jr

1—Ho

X (bg - y]);(%Jr k 2)67)‘2(b27yj)+dx1dy1 R dl‘kdyk‘|

t t—uq s S—v1 k _(l+
= 22/ dul/ dUQ/ dUl/ d’02 / H(§])+ 2
0 0 0 0 ]RQ)’“ .

1 1— H1)

X e (§)+( DN (5+ (& +uz); (3+=%

1-H
)

1

> e—/\1(£j+uz)+<wj + U2) (3+

(@i tv2)4 de) duy . .. dfkdwk]

(w1 = a1, up = as —ay, v1 = by, va =by — by, & = a1 — x5, wj = by —y;).

Then,

/2 khi{’;’H%)\l’)\z((xlayl)v'"7($kayk))2 dridy: ... dzgdys
R?)
' HES L+l (3+572) —2x
:22/ dul/ e~ 1uzdu2[/ 5—(§+ % )(£+u2) e 2 1$d§}
0 0 R+

s s—v1 _ a1 k
></ d’Ul/ e—k)\zvzd,u2|:/ w—(%_;,_l k{{72)(w_~_v2)+(2 :|
0 0 R+




116 Wiener integrals with respect to the two-parameter random fields

U

U s, 2Hi—2 (Ll -3+
Uy el Tha duz[ x 2R ) (4 ug) chl
JOo JR+

t
'l
0
T 2H,—2 14 1-Ha 3+ ) 2\ k
X/ dv1/ - zvzv 272y, [/ y_(5+T)(y+v2) — QyUgdyi|
0
f
0
0

0 R+
F(l — 717H1) 1 2=t k
—k>\1u2 2H1—2 2 k A1us
Y e L T
s—v1 T 1 _ 1-Hp 1 H2”1 k
X/ dvl/o T Ry | . N )<2)\1v2> T K (o)
T 1 1-H; Er T 1 1—Hy k t t—uy Hq—1 k
:22{ ¢ 51_2} { S 1132_2} / dul/ {uz TR im ()\1U2)} dus
VT(2A1) " F Vr(2X2)"F 4 Jo 0

s s—U1 Hoy—1 k
></ d’l)1 {’UQ k Kl—H2 (/\21)2)} dvg
0 k
1

=4 ]’“[ P(3 - 5%)

k
H2—1:|
3

where we have applied the following integral formula

/000 x4 By e M dr = %(i) Qe@F(y)Ké_y (?)

for |arg 5| < m, Rep > 0, Rerv > 0. Here K,(x) is the modified Bessel
function of the second kind (see, e.g., [1, Section 9.6 or [2, Section 11.5]).
To finish the proof of our lemma, it suffices to show that

t A1 (t—uq) Hy—-1 k
/ dU1 / [Zl k K1—H1 (2’1)} le
0 0 k

s S—U1 Hoy—1 k
/ dUl / |:U2 k KI—H2 ()\21}2)] dUQ
0 0 k

are finite for every A1, Ao > 0 and H,, Hy > %

and

Hy—-1
First, assume % < Hy, Hy < 1. In that case, Ki-n, (1) ~ 2, ¥ as 2z — 0
Ho—1 F
and Ki-m, (22) ~ 29 *
k

as z2 — 0 (see [, Chapter 9]), and hence the inte-

Hi—1 k H2 1 k
grands |z, T Ki-m (21)} ~ 2272 a5 21 — 0 and FoKim, (22)| ~

k k
ZSHTQ as zg — 0, which are integrable provided that Hl, Hy > 5 )

1-H

Now, let Hi, Hy > 1. In the latter case, Ki-m, (21) ~ 2, * as z1 — 0 and
k
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1—Hy Hy—1

k
Ki-my(22) ~ 2y ® as zg — 0and therefore the integrands |z; * Ki-m (zl)} ~
k k

Hy—1

k
Cq as 21 — 0 and [22  Ki_m, (2’2)} ~ (Cy as zo — 0, C7 and C5 are con-
k

stants, which are integrable and this completes the proof. n

Based on Lemma 3.1 and the expression (1) which describes the two-parameter
Hermite field and the expression (2) of the tempered Hermite process, we can
introduce the following definition:

DEFINITION 3.2 Let k € N*, H = (Hy, Hy) € (1/2,00)? and A = (A1, \2) €
(0,00)%. The random field

!/
Z§1§;1H2 (s,t) = /( - AW (z1,91) - - dW(Z’k, yk) (6)
R
t s k — -
% (/ da/ de(a—xj);(%+%)e_>‘1(a_xj)+(bfyj):_(%'H kHZ)6—)\2(l)—yj)+>7
0 0 .
7j=1

where zy = zI(x > 0) and W is a standard two-sided two-parameter Brow-
nian field, is called a two-parameter tempered Hermite field of order k. The
prime ’ on the integral indicates that one does not integrate on the hyper-

planes (z;,yi) = (z5,Y;), 1 # J-

The above integral (6) represents a multiple Wiener-Ito integrals of order k
with respect to the standard two-sided two-parameter Brownian sheet W. For
k =1, we call (6) a two-parameter tempered fractional Brownian sheet with
Hurst multi-index H = (Hy, Hs), for k > 2 the random field Zf;g;’}b(s, t) is
not Gaussian and for £ = 2 we denominate it the two-parameter tempered
Rosenblatt field. Note that, when Ay = Ao = 0 and the Hurst index H satisfies
% < Hi, Hy < 1, then the integral (6) is simply a two-parameter Hermite field
of order k, given in (1), which is first introduced as a limit of some weighted
Hermite variations of the fractional Brownian field (see [6, 17]) and then in
[2] this process has been defined as a multiple integral with respect to the
standard Brownian field.

Next, we will prove the basic properties of the two-parameter tempered
Hermite field: self-similarity, stationarity of the increments, Hélder continuity
and then compute the covariance of this processes.

Let us first recall the concepts of self-similarity and stationarity of incre-
ments for two-parameter stochastic process.

DEFINITION 3.3 [20, Appendix A.2| A two-parameter stochastic process (X (s,t))s ter,
T C R?,
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1. is called self-similar with the self-similarity order («, ) if for any h, k >
0 the process

X (s, )—hO‘kﬁX(h k) (s,t) €T

has the same finite-dimensional distributions as the process X.

2. is said to be stationary if for every integer n > 1 and (s;,t;) € T,
1,7 = 1,...,n, the distribution of the random vector

<X(3—l—81,t+t1),X(s—|—82,t—|—t2)7...,X(S+sn,t+tn)>

does not depend on (s,t), where s,t > 0, (s+s;,t+t;) €T, i=1,...,n

3. has stationary increments if for every h, k > 0 the process
(X(t+h,s+k) CX(t,s+ k) — X(t+h,s) +X(t,3)>
(s,t)ER2

is stationary.

The following results show that the two-parameter tempered Hermite field
has stationary increments but is not a self-similar process.

ProrosiTiON 3.4 Le k € N*, Hy, Hy > % and A1, Ao > 0. The process

Z];lIi;HQ given by (6) has stationary increments such that

k, Hq,H. @ k, Hy,H.
{Z et} 2 {20,

for any scales factor hy, ha > 0. Thus, the two-parameter tempered Hermite

d
field is not self-similar. Here, the symbol @ indicates the equivalence of finite-
dimensional distributions.

PRrROOF For every hi, ho > 0, we have

s / hit has
Zyiny(hat, has) :/( dW (z1,y1) ... AW (2, yk) / da/ db
0 0

RQ)k

ploH

k —
H a— ZL'j k )e—>q(a—ac]-)+(b _ yj):r(%Jrl k-l{Q)e—/\g(b—ylj)Jr)

/ t s
= hlhg/ dW (hyz1, hoyt) . .. dW (hixg, hayk) </ da/ db
(R2)k 0 0

k _(l+ﬂ)
X H (ah1 — hll‘j)+ 2 k
j=1
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x e—)\1(ah1—h1xj)+ (th _ thJ)I_ é+1kH2)6_,\2(bh2—h2yj)+>
_p(iyl=Hy gl 1My /
= hyhohy T HEE /@w AW (hy1, hayn) . . AW (b, hay)

t s k ,(l+1*H1) .
X / da/ de (a — .’E])+ 2 EJemM 1(a—z;)+
0 0 =1

! t s
@h{flhgz/( dW(xl,yl)...dW(xk,yk)</O da/o db

RQ)k
k —_ —
<] (a- xj)—(%+%)e—m1(a—xj)+ (b—y) BT )e—Azhz(b—yj)+>

+ +
=1

(7)

_ H1 H2 k:,Hl,HQ
= " Ry 2y 5 e (6 9);

where in (7) we have used the scaling property of the Brownian field.

From the definition of the two-parameter tempered Hermite process, one can
see that for every 21,29 > 0,

Z’;;ﬁ;’H’" (t+ 21,8+ 22) — ZfllileQ (t, s+ 22) — Zflli;Hz (t+ 2z1,8) + Zfljilez (t,s)

!/

d

(z’/ AW (21, 1) - .. dW (25, yi)
(R2)k

t s k _(L+1*H1) _(L+1*H2)
X / da/ db | I(a—avj)Jr 2T emMlammie (h g ) 2T e Relby)
0 0 ;
Jj=1

ke, Hy, H.
=Zy5 5\ C(ts).

Now, we are going to study the continuity of the trajectories of the two-
parameter tempered Hermite field. Firstly, let us recall the following two-
parameter version of the Kolmogorov continuity theorem (see, e.g., [3, Lemme
1] and |20, Theorem B.2|).

THEOREM 3.5 Let (X (s,t))s,ter be a two-parameter process, vanishing on
the axis, with T a compact subset of R. Suppose that there exist constants
C,p>0andx,y>1 such that

p
E|X(t+ 21,8+ 22) — X(t, 8+ 22) — X(t + 21,5) + X(¢,5)| <Czfz)

for every z1, zo > 0 and for every s, t € T such that s+ 21, t+ 20 € T. Then,
X admits a continuous modification X. Moreover, X has Hélder continuous
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z—1

paths of any orders ' € (0, > ), ¥ € (0, %) in the following sense: for
every w € Q, there exists a constant C,, > 0 such that for every s, t, s, t' € T

X(s,t)(w) — X(s,t")(w) — X (s, t)(w) + X (s, ) (w)| < Cult —t'||s — 5|

As a consequence of the previous results, we obtain the following proposition.

k, Hy,H.
,172ad_

PROPOSITION 3.6 The two-parameter tempered Hermite field Zy: o

mits a version with continuous trajectories.

PROOF According to the proof of Lemma 3.1, it is straightforward that

2

E‘Z’;fi;Hz (t+ 21,8+ 29) — Z’;lngz (t,s+ 22) — Z’/\Clli;HQ (t+21,8) + Zl;fi;’Hz (t,s)

01|2’1|2H1|2’2|2H2 % < Hy, Hy <1,
C2|Z]|2‘ZQ|2 Hl, Hy > 1,

where ¢ and co are some positive constants. Using Theorem 3.5 for Zl)fl]i;H"’
for p =2, x = min{2H1, 2}, y = min{2Hs, 2} and ¢ = min{cy1, c2 }, we get the

desired result. n

Now, we are going to compute the covariance function of the two-parameter
tempered Hermite field.

PROPOSITION 3.7 The two-parameter tempered Hermite field Z’;l}iéHg has
the following covariance function:

k k
(i - 1=t (L _ 1=H»
B2 50 5) 25 R0 (. v)| :[ G- 5) G-57)

A1,A2 Hy—1 Hy—1

VT(2A)TF VT(2X2) 7F
t s Hy—1 k

X / / |:‘U1 — ’Ul| E Ku 1 ()\1"&1 — ’Ul|)i| duidvy
0 Jo k
u v Ho—1 k

X / / UUQ —1}2| k KH2—1 (AQ‘UQ—U2|):| dUQdUQ.
o Jo k

PROOF By applying the Fubini theorem and the isometry of multiple Wiener-
It6 integrals we have

!/
E[ 25507 (6 )28 5 " (0, 0) | = E { [ aWr).dWia )

(RQ)R:

S

t
. ( [ |
o 0
/ u v
X {/ dW(xl,yl)...dW(xk,yk)</ da'/ dv’
(R2)* 0 0

1-H,

k
(1 _ (1, 1-H
db H(a_xj)+(2+ % )e—)\l(a—wj)+(b_yj)+(2+ B3 2)6—)\2(b—yj)+>}
Jj=1




A. Lechiheb 121

—

<
I
O

(a/7xj);(%+%)ef)\1(alfwj)+(b 7y]) ( +1 H2) 7)\2(17 y1)+>}‘|

dxy...drdy; ... dyk

>
—

(R2)*

t
/ da/s de (a— 2, FH D e hlamans (g ) GHTR) =hate- ym)
0 e

/ da ,/ db/ (a _x])<;+1‘:’1>6A1<afz_j)+(b,_yj)+<;+1‘fz>ew,fym)
0

:k!/ da/ db/ da’/ av’
0 0 0 0

k
> [/(a . x);(%+17kHl)(a/ _ .’E)J_r(%+17kH1 )e—)\l(a—m)+e—)\1(a/—x)+ d$‘|
R

X

e

k
1 1—H.
X [/HQ(b—y);(2+ A 2)(b/_y)+( + 2) —/\z(b y)+ A2 (b —y)+ dy‘|

t s u v
=k! / da / db / da’ / b’
0 0 0 0

- min(a,a’) k
X / (a—2)~GT T (g — g)~GH e lemn) = h(a'~x) dx]
- min(b,b") k
X (b— y)*(%Jrlkaz)(b’ — y)*(%+17k»1{2 )e—A2(b=y) o= X2(b' —y) dy] i
Finally, we get
t s u v
B[ 2350 (k)23 5 (0, )| :k!/da/ db/ da'/ v/
0 0 0 0
+oo k
x [/ “GHE) (|a — ol | 4+ €) G e Mg Malla—a'|+) d5]

400 k
X [/w@ 1_’CHZ)(|17—b'|+w)7% ) g Aaw = Aa(b=b [ +w) dw]

— / da/ db/ da/ db’e —Aikla— a\| a|2 (H1-1) —>\2k|b b||b b/|2(H2 1)

+oo
[/ SR (g 4 1) TS e Pule alﬂﬂdx]
0
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Hoy 1—

+oo k
X[ Yy~ (y 4 1)~ G f?)e—zxzw—wydy]

:k!/ da/S db “ dd’ /U b e=MHla=a'l| _ o/ PUHI=1) o= Aaklb=b || _ gy |2(Ha=1)
0 0 0 JO

k
F(% — 1_kH1) 1 % Aila—a’| /
X l Nz (2/\1|a—a’|> € K$(A1|afa )
k
F(% — 1_kH2) 1 e A2 |b—b'| /
x [ Nz (2)\2|b—b’|) ‘ Kz (alb =)
t s u v
= k! da/ db/ da// v’
0 0 0 0
k
I 1_1=H 1—1 k
X [\[(2( )21_2] X {|a—a’|Hk KM(/\IW_QIM
s 2/\1 k k
F(l — 17H2) g Ho—1 k
R A
s 2/\2 k k
Thus,
k, Hy,H: k, Hy,H
B[ 25 ) 28 5 0,0
_ k _ k
:[F@—l;ﬁ)] [r@—l;ﬁ)]
Hy—1 Ho—1
VE(2M) V(2Xe)
t s
_ k
X // “a — a’|Hlk 1KH1—1 (Mla — a’\)] dada’
k
0 0
u v &
Ho—
x//[\b—bq 2k1KH2_1(A2\b—b’|)] dbdy,
k
0 0
which finishes the proof. ™

REMARK 3.8 From the previous proposition we can see that the covariance
function of the two-parameter tempered Hermite field varies with respect to
k > 1 contrary to the Hermite field (see [¢]) which has the same covariance
structure for all £ > 1 (the latter coincides with the covariance of the frac-
tional Brownian field).

4. Spectral representation of the two-parameter tempered Her-
mite field The aim of this section is to analyze more deeply the class of the
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two-parameter tempered Hermite field. The representation (6) is defined on
the real line and on the time domain. In the sequel, we will introduce equiv-
alent spectral integral representations defined on the real line of the process.
It should be remembered that for one parameter processes, the tempered
Hermite process Zf’H (H > 1/2 and X\ > 0) has the following spectral domain
representation (see, e.g., |15, Theorme 1.1] and [19, Theorem 6.3]):

eltwit..+wg) _ 1 l_H ~ -
Zk (1) = (A iw)~@""% )B(dw) ... B(d
/\,H( ) CH,k /Rk Z(w1 ny +wk le;[ —Hw 27 & ( Wl) ( wk),

where B is a suitable complex-valued Gaussian random measure on (R,B(R))
and the double prime on the integral indicates that one does not integrate on
diagonals where w; = wj, © # j.

We begin this section by defining the Hermitian random measures on (R?, B(R?))
and the corresponding Wiener integral with respect to it in Subsection 4.1.
Next, we give the spectral representations theorem for two-parameter stochas-
tic processes in Subsection 4.2. Finally, we study the case of the two-tempered
Hermite sheet in Subsection 4.3.

4.1. Hermitian random measures in (R?, B(R?))

DEFINITION 4.1 Let m be a symmetric random measure on (R?, B(R?)) in
the sense that

m(A x B) = m(—(A x B)), for Ax B e B(R?), (8)

where

—(Ax B) = {(z,y) €R? : (—x,—y) € A x B}.

A Hermitian (complex) Gaussian random measure on (R? B(R?)) with a
symmetric control measure m is a collection of complex-valued random fields
{ W\(A x B); Ax B € B(R?)g } defined on some probability space (€2, F,P)
such that

W(Ax B) = W(—(Ax B)); Ax B e BR?),, (9)

where

B(R?), = {AxBeB(Rd) : m(Ax B) <oo}.

We note that relations (8) and (9) are often written as m(dzdy) = m(—dzdy)

and W(d:vdy) = /W(—dxdy), respectively. There is several properties of Her-
mitian (complex) Gaussian random measure defined on (R?, B(R?)) that can
be found for example in [16, Appendix B| and [13, Chapter 9]. In the following
statements, we suppose that the sets belong to B(R?)g. We have:
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1. E[W(Ax B)] = 0and E[W(A; x B)W (A2 x By)] = m((A1 x B1)N
(A2 X BQ))

2. If Ax BN (—(Ax B)) =0, then E[W(A x B)?] = 0.
3. ReW(A x B) and ImW(A x B) are independent.

4. If Ay x BiU(—(41 X By)),...,Ap X B, U (—(A, x By,)) are disjoint,
then W (A1 x By),...,W(A, x By,) are independent.

Having defined a Hermitian Gaussian random measures /V[7, we shall now
define, I ZV , the multiple Wiener integrals with respect to W. To define such
stochastic integrals, one firstly introduces Hé, the real Hilbert space of complex-
valued functions f((x1,v1),. .., (Tr, ¥x)), (zi,v:) €R% i =1,3,... k that are

even, i.e. f((z1,91), ..., (2k,y)) = f(—=(x1,91), ..., — (K, yr)) and square in-
tegrable, that is,

If11? = /(R2)k |fF((z1,91), - - - (@, yw)) Pdardyy - . dagdyy, < oo.

The inner product is similarly defined for f, g € H5 by

(fr 903 = /f((xl,yl)w'-a(x/mylc))g((xlayl)v--'a(xkvyk))dxldyl-~-d$kdyk-

The integrals I;W are then defined through an isometric mapping from 7—[’5 to
L2(9) :

o~ o~

- "

Pty = [ S (o) W) . W (i)
R

The mapping is defined in such a way, that heuristically, one disregards inte-

gration over hyperplanes. The fact that both f and W are even ensuring that

IV(f) is a real-valued random field.

4.2. Spectral representations of two-parameter stochastic pro-
cesses In this section, we are interested in the relation between the classical
multiple Wiener-1t6 integrals with respect to the standard Brownian field I ,‘:V
defined on Section 2 and the one defined with respect to the random spectral
measure I}V. According to [19, Lemma 6.1 and Remark 6.2], we have the
following result:

PROPOSITION 4.2 Let A((&1,w1), ..., (&, wj)) be a real-valued symmetric func-
tion in L?((R*)*) and let

FIAI((A15€1)5 -+ o5 (Mg Cr))
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N (271T)"” /(Rz)k e Tim1 8% g D1 @i A((6r,w1), - (G w;)) dErden - Ao,
(10)
be its Fourier transform. Then,
/(R2)k A((&lywl)’ SRRE) (gkvwk)) dW(gla W1) s dW(&ka wk)
D FANG), - (kG W(dA, ) - W (dA,dG). (1)

(R2)k
4.3. The case of the two-parameter tempered Hermite fields

PrROPOSITION 4.3 Let Hy, Hy > % and A\, Ay > 0. The two-parameter tem-
pered Hermite random field given by (6) has the following spectral domain
representation

" itzkzl fj o 18 Zkzl wj 1
Z30 N (5,) = Cry / G Die” = )
(R2)F Z] 165 Zg 1%

17H

k
H (M +i6) @ T D) g +iw;)~ @7 D) W(dérdw) . .. W (dépduwy,),

where W (.) is a complez-valued Gaussian random measure on (R%, B(R?)),

and
[F(% Bl Ul )1

CH17H27k = 27T

is a constant depending on Hy, Hs, and k. The double prime " on the integral

indicates that one does not integrate on the hyperplanes (&j,,wj,) = (&5, wjs),
J1 # Ja2-
PROOF Let hfg’HQ’)‘l’)‘Z : (R?)* — R the function defined in Lemma 3.1:

hHl’H2’)\1’>\2((x17y1) (xkaykﬁ))

/ / a—x] 7(%+171“Hl)67)‘1(“7x1) -y, TGS e 22(0=Y)+ dq db.

Let us first compute its Fourier transform.

FIREPAA2Y (g4 w1), . (Eywr)

= @ / el X1 €525 i 2y Wi hftl’HQ’)‘l’)‘z((xl, Y1)y -y (Tk, Y)) dx1dyy - . . dagdys
(R2)k
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o
- (2mF

t s k 7(l+1_H1) ( Jr1 H2)
X / / H(a —z) 2 F 6*/\1(a*frj)+(b —yi) e~ 2200=Y5)+ dq db
o Jo ;5

k 1
271' / / /]Rk (DIREILY H(a—xj) 3+ ) e~ Mla—z;)4 dry .. dik} da db

j=1

/ deidy, . . . dzgdyge’ 3 6% o8 2 Wil
(R2)*

_ 1 bl k iE & la—X;) .
=, J, [0 Lo H<X 0]
% {(71)19/ i 1 wi (b= Y)H Je=%(Yi+ gy, .. dYk] da db.
Rk
Then,
FlI M 221 (e wn), L (6 wr)
t s
_ ! k:/ ZAzé?lffada/ ¢i Xi=19ib g
(2m) 0
k 1
/ H )=t X))+ g, ka}
k 4= H2 .
/ H ) = (ki) (¥4 dyl_”dyk}
1 (ethjzlﬁj —1)(e is g ) —1)F(1 1—H1 kﬁ M i€) (L1t
_ k; - 1 J
(2m) Z] 151 Z] 19j j=1

1 1—Hyk . ,(171*H2)
><1“(§— ? )jl_Il()\2+zwj) 27w ).

Let W() be a complex-valued Gaussian random measure on (R?, B(R?)).
Using Proposition 4.2, we get

Zk’, Hy,Hs (d) C " (elt2j=1 & )( PSP wi _ 1)
e (81) = Chy iy —
* Z] 1§ ZJ 1%

1—H2

k
lfH 1
< [Tu +ig) G (g +iwy) G- W (déydwr) ... W (d€dwy).
7=1

REMARK 4.4 In [8, Remark 2|, the authors said that it will be interesting to
find the spectral domain representation of the Hermite field (1). So, taking
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A1 = A2 = 0 and using the previous results, one can write

—

(R2)k Z?:l §j Z?:l wj

" itzkzl fj -1 1S Zkzl wj 1
Zk L2 (g 1) (d) CH:[,HQ,k/ (e 2 ) (€% 25 )

k
x [T G0€) G 7 iwy) ™) W(dérduwn) ... W (dépduy,).

J=1

where Hy, Hy € (3,1).

5. Two-parameter tempered fractional calculus

5.1. Two-parameter tempered fractional integrals In this subsec-
tion, we will give the definitions of multiple tempered fractional integrals and
derive their properties.

DEFINITION 5.1 (TWO-PARAMETER TEMPERED FRACTIONAL INTEGRALS)
Let aq, ag, A1, A2 > 0. We denote o = (a1, a) and X\ = (A1, \2). Let f be a
function belonging to LP(R?) (where 1 < p < 00). The left and the right two-
parameter tempered fractional integrals of order « are, respectively, defined
as

H?F’A(f(t’ 5)) = 1“(041)11“@2) /1@2 e_kl(t_“ﬂ(t — u)‘j_l—l

x e 257V (g U)(f_lf(u, v) dudv

and
1
R By T
(f( )) F(OKI)F(OQ) R2 ( )-i-
x 2078+ (y — s)?f_rlf(u7 v) dudv
+o00o

where I'(a;) = e %x% 1 dx is the Euler gamma function, and (z)y =
xI(x > 0).

When A1, A2 = 0, these definitions reduce to the (positive and negative)
multiple Riemann-Liouville fractional integrals, which extend the usual op-
erations of multiple iterated integration to a multiple fractional order. The
following results gather some basic properties of fractional integrals

PrROPOSITION 5.2 For any a1, as > 0, A1, Ao >0, and p > 1 € N, the multi-
ple parameters tempered fractional integrals ]Ii”\, and 1% have the following
properties:
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(i) Reflection property: If Q is the reflection operator defined by (Qf)(u,v) =
f(=u,—v), then

QIF S =137/,
(ii) Semigroup property: For f € L*(R?) we have

IYPAMEAF = 19792, a = (an,a0), B = (B1, B2) > (0,0).

(#5i) Two-parameter tempered fractional integration by parts formula: Sup-
pose f, g € L?(R?). Then

A ;A
/Rz flo, I "g(z, y) dedy = /RQ I f (2, y)g(z, y) dedy.
PROOF The property (i) is elementary. In fact,

Q]I(:XN:,)\f(u? 1)) H(:XI:V)\f(_u7 _U)

= Hi”\Qf(u,v).
The proof of (ii) is direct.
(28 ,5)
1 M)y a1—1_—Xo(s—v) as—1
— t— 2 (e 2
e e TG Jee® (wi e (s o)

x [N e (o ) (o) dody dud.
RZ

By changing the order of integration using Fubini’s theorem and making the
change of variables u = = + (t — z)w; and v = y + (s — y)wa:

(13712 2) £ (2, 5)

! —Ar(t—u)y a1—1_—Xa(s—v) ao—1
t— +(g — 2
(1) ()T ()T (B2) /R fz.y) M e (t—w)g e (s — v)°
w e M (w4 (u— x)ilfle—Az(vfyH(v _ y)igfl dud’U:| dady
= B(ay, f1) B(az, B2) A (t—z) 4 a1 +B1—1_—Xa(s—y)+ az+pB2—1
T T(a)(a2)T(B1)T(B2) Jpe flz,y)e (t—x)% e (s—y)§ dxdy
=197 f(t, 5).

Next, we prove similarly that 152 f = 19752 £,

The property (iii) would follow immediately if one could change the order of
integration in:
[ s g(o. ) dedy

R2

1 — T—u ar—1_— —v g —
= /2 f(x,y)m /2 e METW (g u) e A2(=v) () 0)$* " g(u, v) dudvdady
R R
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Y an T (a) / / e NI (g — )1 Tle AW (y — )22 g (u, v) dudvdady
Ozl Oé2
u, ’U +oo +°O ,)\1 z—u) a1—1_—Xa(y—v) az—1
(z,y)e (z — u) e (y —v) dxdydudv
1)T(a2)

= [ gty dedy

iy
- [ oS

and this completes the proof. ™

Now, we will derive other properties of the two-parameter tempered fractional
integrals that will be needed in the rest of this paper.

LEMMA 5.3 For any o = (a1,a2) > (0,0), A = (A1, A2) > (0,0), and 1 <
p < 00, Hi’)‘ is a bounded linear operator on LP(R?) such that

£, < Araze )£, (12)
for all f € LP(RY).

PRroOOF Before giving the proof of our lemma, we recall the following Young’s
convolution result (see, e.g, |9, Theorem 20.18|): Let f, g : R> — R. The
convolution of f and g at (x,y) is

(fxg)(z,y) = /R2 f((x =21,y —y1)g(x1,y1) dordy:

provided the integral is defined.
Let p, g, r € [1, 00] satisfy

with the convention 1/c0 = 0. Assume that f € LP(R?), g € L4(R?). Then

1. The function (x1,41) — f(x — 21,y —y1)g(x1,y1) belongs to L' (R?) for
almost all (z,y).

2. The function (x,y) — (f * g)(x,y) belongs to L"(R?).

3. There exists a constant ¢ = ¢, 4 < 1, depending on p and ¢ but not on
f or g, such that
1f =gl <c-[lflp - llgllg- (13)

We return to the proof of our lemma. Obviously I3 M s linear, and I’ )‘f(s, t) =
(f * ¢2)(s,t) where

ot (s,t) = sarltarle*@lswﬂ1{(0,00)2}(5,t) (14)

INCIDINCEY)
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and

- 1 al— ag— s
¢a (S,t) = F( (—S) 1 1(—t) 2 16/\1 +)\2t1{(_00’0)2}(8,t)

ap)l(e)
for any a = (a1, a2), A = (A1, A2) > (0,0). But

+ 1 LRl RPN 1 Aot
— 1= 15pa2— 2t dsdt
1650 = i L[ s
1
= ————— A\ "T(ag)A, T
F(al)f‘(al) 1 (041) 2 (042)
— )\1—(11)\2—(12
Then, (12) follows from Young’s convolution inequality (13). n

Next, we discuss the relationship between tempered fractional integrals and
Fourier transforms. Recall that the Fourier transform of f : R? — R is the
function F[f](s,t) defined by

PN = g [, 00 slen ) dende

LEMMA 5.4 For any a = (a1,02), A = (A1, A2) > (0,0) we have
FIIEA] () = FIA . y) (£ ir) ™ (A £ i)~
for all f € LY(R?) and all f € L*(R?).

PrOOF The function ¢ in (14) has Fourier transform
1 .
FloT 7 _ i(x€1+y&e) car—1ean—1 —(A1&1+X2&2)
[(ﬁa}(x y) 27’[’F(CM1)F(OQ) /]Rze 51 52 €

X 10,0002} (€1, §2) dE1dE2

1

o (o0
— iGrzgon—1 —M&ig €2y ga2—1,—ab2 g
27TF<CY1)F(042)/0 € fl € 61 X/O € ‘52 € 52

1
= O Fin) (g +iy)

Now, we give the analog of the two-parameter convolution theorem (in R one
can see, e.g., [2, Section 15.5] and [5, Chapter 6]). Let f, g € L'(R?), it is not
easy to show f x g € L'(R?) has Fourier transform 27F[f](z,v)F[g](z,y).
Then, it follows that

FAEAM () = (f * 65) (@, y) = Ff@,y) (M +i2) " (A + i) 2.

Similarly, we prove that

FIEA (@, y) = (f % ¢a)(@,y) = FLf(w,y) (0 — iz) ™ (s — iy) 2.

If f € L?(R?), approximated by the L' function f(z, YLy 1] x [n2,m0] (T3 Y)
and let nq, ng — oo. n
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5.2. Two-parameter tempered fractional derivatives In this sub-
section, we consider the inverse operators of the two-parameter tempered frac-
tional integrals, which are called two-parameter tempered fractional deriva-
tives. For our purposes, we only require derivatives of order a such that
0 < a1, a1 < 1, and this simplifies the presentation.

DEFINITION 5.5 The positive and negative tempered fractional derivatives
of a function f :R? — R are defined as

DY f (s, 1)
= )\azAazf(S ) Q102 / / f(u 'U) 6—)‘1(S—u)6—A2(t—v) dud
L2 ’ N(1—a)l'(1l—a2) s—u"ﬂ“t—v)‘12Jr1
(15)
and
D% f(s,1)
= )\02)\(12]0(8 t) + 102 / / f(u U) 6*>\1(U*5)6*A2(U*t) dudv
! 2 ’ F(lfoq 17042 ufs 041+1 U,t)a2+1 )
(16)

respectively, for any 0 < oy, as < 1 and any Ay, As > 0.

Two-parameter tempered fractional derivatives cannot be defined pointwise
for all functions f € LP(R?), since we need |f(s,t) — f(u,v)| — 0 fast enough
to counter the singularity of the denominator (s —u)® (¢t —v)*2* asu — s
and v — t. We can extend the definitions of the two-parameter tempered
fractional derivatives to a suitable class of functions in L?(R?). For any a =
(a1,a2) > (0,0) and A = (A, A2) > (0,0) we may define the fractional
Sobolev space

‘ 2

W 2(R?) := {f € L*(R?) : / (M) (A3 +wd)o2 | Ff) (w1, we)| dwidws < oo},
R2

which is a Banach space with norm

17l = 0% + ) (38 + w82 | FF1n, )| o

The space W% 2(R?) is the same for any A\j, Ay > 0 (typically we take \;
A2 = 1) and all the norms || f||,, » are equivalent, since (1 + w?)(1 + w3)
(A2 +w?)(A3+w3) < /\2)\2(1+w1)(1+w§) for all A, A2 > 1, and (A} +w?)(\3
wd) < (14w +wd) <ATA2(1 +w?)(1 4 wd) for all 0 < Ap, Mg < 1.

<
+

DEFINITION 5.6 The positive (resp., negative) two-parameter tempered frac-
tional derivative Di’)‘f(s,t) of a function f € W*2(R?) is defined as the
unique element of L?(R?) with Fourier transform F[f](x,y)(\ % iz)? (A &
iy)*? for any aq, ag > 0 and any Aj, A1 > 0.
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LeMMA 5.7 For any a1, as > 0 and any A1, A1 > 0, we have

DY f(s,t) = f(s,1) (17)

for any function f € L*(R?), and

I$ DS f(s,1) = f(51) (18)
for any f € W*2(R?).

PrOOF Given f € L?(R?), note that g(s,t) = ]Iai’Af(s,t) satisfies, by Lemma
5.4,
Flol(z,y) = FIf (@, y) (A £iz) " (A £iy) "2

Then, it follows easily that g € W ?(R?). Definition 5.6 implies that

FDI I f(x,y) = FIDT gl(z.y)
= Flgl(z,y)(\ £ iz) =1 (Ag £ iy)
= Flfl(z,y).

Then, (17) follows using the uniqueness of the Fourier transform. Similarly,
we can prove (18). -

6. Wiener integrals with respect to the two-parameter tempered
Hermite field of order one Recall that the two-parameter tempered Her-
mite field of order one is given by:

1, Hy,H
ZAI’A; (s,t)

/ t S 3 3
:/ / / (a—a)} 2e MO D (p ) T2 b0 da dbaW (2, y),
R2J0 JO
(19)

where Hy, Hy > 4 and A1, A2 > 0.

In this section, we will develop the theory of Wiener integrals with respect
to the two-parameter tempered Hermite field of order one. We consider two
cases:

o L<Hy, Hy<1, A, A2>0
e Hy, Hy > 1, A\, Ao > 0.

6.1. Case 1: % < Hy, Hy <1 and A\, Ao > 0 We first establish a

link between Z)l\lthz and the two-parameter tempered fractional calculus

developed in the previous section.
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LEMMA 6.1 For a two-parameter tempered Hermite field of order one given
by (19) with A1, A2 > 0, we have:

1 1, /[
2350 (s ) = D(Hy — )T(Hs - 3) /R (T 1000 ) @ p) AW (),

2 2
(20)

where B = (Hy — +, Hy — %) such that Hy, Hy > %

27

PROOF Write the kernel function in (19) in the form

_3 _3
hs (2, y) = // a—le 2 M(a—2)+ +(b— y)EQ 2= 22(=Y)+ 4 db

3
= /Rz a—SC)f1 R A y)f2 2 A2 (b= y)+1[05]><[0,t](a7b) da db

1 1, /8.2
= D(H - 5)l(Hz — §)<H_ 1[0,s]><[0,t]><m7y)7
whereB:(Hl—%,Hg—%). |

Next, we discuss a general construction for stochastic integrals with respect
to Z ;111121{2 Recall how we classically defined Wiener integrals with respect
to the Brownian field: first we define it for elementary functions and establish
the isometry property, then we extend the integral for general functions via
isometry.

Denote £ the family of elementary functions on R? of the form

f(xay) = Zaél(sz,sg+1]><(tg,tz+1](xay)7 Sp < Sp+1, ty < t€+1 ap € ]R; {= 13 sy
=1
(21)
For functions like f above we can naturally define its Wiener integral with
respect to the two-parameter tempered Hermite field of order one as:

Ia)\
/ F(,y) dZ5 T2 (1, )

k,Hl,HQ k,Hl H 1 H2
= Zae[ A M Se+1,ti+1) 2\ (Set1,t0) — 23N *(se,te41) +Z,\1 N (se5te) ]

where 8 = (Hy — 5, Hy — ). Then it follows immediately from (20) that for
f € &, the space of elementary functions, the stochastic integral

T9M(f) = / F(,y) dZ8 2 (1, )

1 1

= T(Hi - 35)0(Hy—3) /Rz <]I€’Af) (a,b)dW (a, b)
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is a Gaussian random field with mean zero, such that for any f, g € £ we have

(TN, I (9)) 2o
—B[ [ e azy ) [ oo dz )]

1

5 F(H2—§)2 /R (121) @,6) (1%%9) (. ) dadb.— (22)

= T(H; —
The linear space of Gaussian random variables {Z% MNP, feE } is contained
in the larger linear space

%(Z;TQHQ) = {X: T f,) — X in L*(Q) for a sequence f, in £}

( 1 H17H2)

An element X € Sp is mean zero Gaussian with variance

Var(X) = lim Var[Z®*(f,)],

n—oo

and X can be associated with an equivalence class of sequences of elementary
functions (f,) such that Z®*(f,) — X in L?(R?). If [fx] denotes this class,
then X can be written in an integral form as

x = [ Iz (23)

and the right-hand side of (23) is called the stochastic integral with respect
to the two-parameter tempered Hermite field of order one Z;’ ! Hl’HQ on R?.
Recall that for the case of Brownian field: Ay = Ay = 0 and H, = Hgi,
T f,) — X along with the following Ito isometry

T, @) = CI. T0)) = [ fGap)atv) dudy = (F, 9)pager

implies that (f,,) is a Cauchy sequence, and then since L?(R?) is a (complete)
Hilbert space, there exists a unique f € L?(R?) such that f,, — f in L?(R?),
and we can write

X = [ fapaw.y).

However, if the space of integrands is not complete, then the situation is
more complicated. Here we investigate stochastic integral with respect to the
two-parameter tempered Hermite field of order one based on time domain
representation. Equation (22) suggests the appropriate space of integrands for
the two-parameter tempered Hermite sheet of order one, in order to obtain a

nice isometry that maps into the space %(Z;llgfh) of stochastic integrals.



A. Lechiheb 135

THEOREM 6.2 Given % < Hy, Ho <1 and A1, Xo > 0, the class of functions

2
Hy = {feLQ(]R2): / (]Ié’Af)(a,b)‘ dadb<oo},
RQ
1§ a linear space with the inner product

<f7 g)'Hl = <Fv G>L2(R2) (24)

where

F(a,b) = T(H; — %)r(H2 - %)(H?’V) (a,b)

and

Gla,b) = P(H1 = )T (Hz — ) (1) (0,D), (25)

where 3 = (H1 — 3, Hy— 3) and A\ = (A1, A2). The set of elementary functions
& is dense in the space Hi. The space Hi is not complete.

Proor To show that H; is an inner product space, we will check that
(f, f)#, = 0 implies f = 0 almost everywhere.
If (f, f)2, = 0 then we have (F, F)2gey = 0, which implies that

1 1
Fla,b) = F(Hl—i)F(Hz—i)OIé’A f) (a,b) = 0, for almost every (a,b) € R,
Then,
(]Iﬁ”\f) (a,b) =0, for almost every (a,b) € R%. (26)

Apply ]D)é’)‘, 8= (H — %,HQ — %), to both sides of equation (26) and use
Lemma 5.7 to get f(a,b) = 0 for almost every (a,b) € R?, and hence H; is
an inner product space.

Next, we want to show that the set of elementary functions £ is dense
in Hy. For any f € M1, we also have f € L?(R?), and hence there exists a
sequence of elementary functions (f,) in L?(R?) such that ||f — fn|| [2(R2)-
But

1f = fallay, = (f = for £ = fr)m, = (F = Fy, F_Fn>L2(R2) = ||F_FN||L2(R2)7

where

Fu(a,b) = T(Hy — %)r(m - %)(H@fn) (a,b). (27)

Lemma 5.3 implies that

1f = fallst, = IIF = Fall2ezy = 22 = fa)ll 22y < CUS = fallo @)

for some C' > 0, and since [|f — fulz22) — 0, it follows that the set of
elementary functions is dense in Hj.
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Finally, we provide an example to show that #; is not complete. Proceed-
ing as |14, Proof of Theorem 3.1| the functions

fa(z,y) = 2y PLicpa), 1y j<ny (2, 9), P> 0,

are in L2(R2), fo(z,y) = ﬁ(—x, —y), and hence they are the Fourier trans-
forms of the function f, € L?(R?). Apply Lemma 5.4 to see that F,(z,y) =
['(Hy — 3)[(Hs — %)(HéAf) (x,y) have Fourier transform

1 1

FlEn)(,y) = T(Hy = )T (Hy =) i) O i) 312 (0,5). (25)

Slnce Hl, 5 — Hyp <0, it follows that

1Eal3 = IFIFI = <H1—§>2F<H2—§>2

// 202 4 2231 (02 4 42) 52 dady < oo

which shows that f,, € Hi. Now it is easy to check that f, — fi, — 0 in Hq,
as n, m — oo, whenever p > max(1 — Hy, 1 — Hs), so that (f,,) is a Cauchy
sequence. Choose p = % and suppose that there exists some f € H; such that
| f — full#y — 0 as n — oo. Then

/ / = R ) PO2 4 22 (A2 4 y2) 2 dpdy — 0,

as n — oo, and since, for any given m > 1, the value of ]?n(ac,y) does not
vary with n > max(mj, mg) whenever (z,y) € [—my,m1] X [—ma, ma], it
follows that f(z,y) = |xy\7%1{|m|,|y‘>1} on any such interval. Since mq, mo
are arbitrary, it follows that ]?(Jr,y) = |xy|_%1{|x‘7|y‘>1}, but this function is

not in L2(R2), so f(z,y) ¢ Hi1, which is a contradiction. Hence H,; is not
complete, and this completes the proof. n

We now define the stochastic integral with respect to the two-parameter tem-
pered Hermite field for any function in H; in the case where % < Hq, Hy < 1.

DEFINITION 6.3 For any § < Hy, Hy < 1 and Ay, A2 > 0, we define

1 1
1, H1,Ho . 1 1 B, A
L i@ azy iy ey = Tn=r=g) [ (105) (@) dW @),
(29)
where = (H; — %,HQ — %), for any f € H;.
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THEOREM 6.4 For any % < Hy, Hy < 1 and A\, Ao > 0, the stochastic
integral in (29) is an isometry from H; into Sip(Zi’llilz’HQ) Since Hi is not

complete, these two spaces are not isometric.

ProOF It follows from Lemma 5.3 that the stochastic integral (29) is well-
defined for any f € H;. The extension of |14, Proposition 2.1] to d = 2
is natural and it reads as follows: if D is an inner product space such that
(f,9)p = <Ia’)‘(f),Ia’)‘(g)>Lz(Q) for all f, g € £ (£ the family of elementary
functions on R? of the form (21)), and if £ is dense in D, then there is an

isometry between D and a linear subspace of Sp(Z ;111121{2) that extends the

map f — Z*(f) for f € £, and furthermore, D is isometric to %(Z;lligHz)

itself if and only if D is complete. Using the Itd isometry and the definition
6.3, it follows from (24) that for any f, g € H; we have

(fs ), = (F. G)pawey = (M), I%M9)) 120
and then the result follows from Theorem 6.2. n

We now apply the spectral domain representation of two-parameter tempered
Hermite field given in Section 4 to investigate the stochastic integral with
respect to Z ;1}?2}[2 First, recall that the Fourier transform of an indicator

function is

Fllogxogléw) = / / 2wy do dy
u‘f _ 1)( isSw )
27r fw '

Apply this to write this spectral domain representation of the two-parameter
tempered Hermite field in the form

1 1 "
23550 = T = T = 3) [ Fllpgaoal€s)
1—

H

x4 i€~ G T g+ iw) "G D) W (dedw).

It follows easily that for any elementary function (21) we may write
1 1 "
) = T - TR - 3) [ FAE)

(A1 +i€) 2 (Mg + iw) 22 W (ddw),
and then for any elementary functions f and g we have

(Z%A(F), TM0) 2@y = D(Hy — DN (Hy 1)

/ FUNE ) FGE @) (A2 + €)F (02 + w?)—H2 T (dédw).
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THEOREM 6.5 For any% < Hy, Ho < 1 and A1, Ao > 0, the class of functions

= {f e L*(R?): /‘]—“[f](f,w)‘Q()\eriQ) “Hi (02 402)2 2 g¢ du < oo}

(30)
is a linear space with the inner product
1 1.,
(f,9n, = T(Hi— *) ['(Hy — 5)
< [P FITEDTOF + €)1 08 +) 3 e, o).

The set of elementary functions £ is dense in the space Ho. The space Ho
is not complete.

PROOF Since Hy, Hy > 1, the function (A} + 52)’7H1()\2 + w ) g
bounded by a constant C'(Hp, Ha, A1, A2) that depends only on Hj, Ha, A\
and Mg, so for any f € L?(R?) we have

/ FIIE P OF+H) 2  (+w?) 22 dede < C(Hn, Ha, M, ) / L IFUNE @) déda < oo
: (31)

and hence f € Ha. Since Ha C L%(R?) by definition, this proves that L?(R?)

and Ho are the same set of functions, and then it follows from Lemma 5.3

that H; and Hz are the same set of functions. Observe that ¢, = (Hé’)‘f),

where = (Hy — 1, Hy — 1)), is again a function with Fourier transform

Flea€w) = O +i€)2 M (o +iw) 2 R FIf(€,w).
Then, it follows from the Plancherel Theorem that

<f7 g>7~l1
1, 1
=D(Hy = 5)"T(Hz = )@y, ¢g)2
1 1
=T(H - 2) ['(Hy — 5) (Flegls Flogh)2
I - P = P [ [ FEWFEI08 + €1 0 + ) ded
- <fa >7-L27
and hence the two inner products are identical. Then, the conclusions of
Theorem 6.5 follow from Theorem 6.2. n

DEFINITION 6.6 For any 3 < Hy, Hy < 1 and Ay, A2 > 0, we define

) = T - - b [ A
R2
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(A1 +i€)2 1 (g + iw) 2~ H2 T (dédw), (32)

for any f € Ha.

THEOREM 6.7 For any 5 L« Hi,Hy <1 and M\, X2 > 0, the stochastic

integral in (32) is an zsometry from Ha into Sp(Z1 fith) Since Ha is not

complete, these two spaces are not isometric.

PrROOF The proof of Theorem 6.5 shows that H; and Ho are identical when
Hy, Hy > % Then, the result follows immediately from Theorem 6.4. ™

6.2. Case 2: Hy, H> > 1 and A\, A2 > 0 Now, we consider the second

case that we mentioned at the beginning of this section. We will show that

1, Hy,Ho - . . . . . ..
Zy )\; % is a continuous semimartingale with a finite variation and hence

one can define stochastic integrals I(f) := /f(:n,y)Z)l\’llilz’m(dx, dy) in the

standard manner, via the Itd stochastic calculus.

THEOREM 6.8 A two-parameter tempered Hermite field of order one {Z1 Hl 2 (5,1)} s 120
with Hy, Hy > 1 and A1, Ao > 0 s a continuous semimartingale wzth the
canonical decomposition

s t
Z)l\;ﬁ;HQ(&t) :/0 /0 MH1,H2,A17A2(x’y)dxdy (33)

where

Hl Hy—3
My iy 00,00 (5 Y) (z = &)y iy - w)
7>\1 +e—M2(y—w +W(d§ dw).
1,Hy,Ho : 3 4
Moreover, {Z' "\ (s,1) }st>0 is a finite variation process.

PROOF Then proof is similar to that of |10, Theorem 3.2|. Let (W (s, t), s,t €
R) be a two-parameter Brownian field and let {FJ}s1<o be the o-algebra

generated by {W(z,y): 0 <z <s,0<y<t}.

Given a function g : R? — R such that g(s,t) = 0 for all s, t < 0, and

g(s,t) = C+/ / h(z,y)dzdy, for alls, t > 0, (34)
0 Jo

for C' € R and some function h € L?(R?).
A natural extension of [7, Theorem 3.9] to R? shows that the Gaussian sta-
tlonary increment process

Y7, = /R2 [g(t—u,s—v)—g(—u,s—v)—g(t—u, —v)+g(—u, —v)] dudv (35)

)
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is a continuous {FY }5 ;>0 semimartingale with canonical decomposition
st

s T t y
Y:st - g(ov O)Ws,t + / / / / h(.f —u,y—- U) W(dua d’U) dl’dy, (36)
0 —o00 JO J—0o0

and conversely, that if (35) defines a semimartingale on [0,T1] x [0, T3] for
some 17,75 > 0, then g satisfies these properties.
In our case, we define g(s,t) =0 for s, t <0 and

s rt
g(s,t) == / / :I:Hlfngr%e*)‘lxe*Aly dxdy for s, t > 0. (37)
0o Jo

Following as in Lemma 3.1, we can show that the function g(t — u,s — v) —
g(—u,s —v) — g(t — u, —v) + g(—u, —v) is square integrable over R? for any
Hy, Hy > % and )\1, Ao > 0.

Next, we observe that (34) holds with C' =0, h(z,y) = 0 for z, y < 0 and

h(z,y) = :cHl*%yHT%e*/\lxe*’\ly € LZ(RQ) (38)

for any Hy, Ho > 1 and A1, A2 > 0. Then, it follows that the two-parameter
tempered Hermite field of order one is a continuous semimartingale with
canonical decomposition

1, Hy,H
Zy N, (80t

/ t S 3 3
= / / / (a—a)" T 2e Mo D ()P T2 qo gy aw (2, y)
R2J0 JO

t S / 3 3
N / / / (a— )y 2e @D (p ) PR RO g (2, y) da b,
0 0 R2
(39)

which reduces to (33). Since C' = 0, a extension of |7, Theorem 3.9] implies
that {Z}\IK;HQ} is a finite variation process. =

REMARK 6.9 It is not hard to check that the two-parameter tempered Her-

mite field of order one is not a semimartingale in the remaining case when
L <H, Hy<1l
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Calki Wienera wzgledem dwuparametrowych temperowanych

pol losowych Hermite’a.
Atef Lechiheb

Streszczenie Dwuparametrowe temperowane pole Hermite’a modyfikuje jadro po-
tegowe w reprezentacji sredniej ruchomej pola Hermite’a poprzez dodanie obcina-
nia wykladniczego. Podejscie to uogoélnia teorie dwuparametrowego pola Hermite’a.
Bada $rednia ruchoma, wtagciwosci trajektorii probkowych, reprezentacje spektralne
i teorie calki stochastycznej Wienera dla dwuparametrowego temperowanego pola
Hermite’a rzedu pierwszego.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Stowa kluczowe: dwuparametrowe temperowane pole losowe Hermite’a, reprezenta-
cje spektralne, catki stochastyczne, catki Wienera-Ito .
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