Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is proved analytically that the complex growth rate n = nr + ini (nr and ni are the real and imaginary parts of n , respectively) of an arbitrary neutral or unstable oscillatory disturbance of growing amplitude in rotatory electrothermoconvection in a dielectric fluid layer saturating a sparsely distributed porous medium heated from below, for the case of free boundaries, is located inside a semicircle in the right half of the nrni − plane, whose centre is at the origin and radius = [formula], where Ta is the modified Taylor’s number, Pr is the modified Prandtl number, Rea is electric Rayleigh number and A is the ratio of heat capacities. The upper limits for the case of rigid boundaries are derived separately. Furthermore, similar results are also derived for the same configuration when heated from above.
Wydawca
Czasopismo
Rocznik
Tom
Strony
135--146
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
- Department of Mathematics, Baba Balak Nath College, Hamirpur, Himachal Pradesh, 176039, India
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
Bibliografia
- [1] Banerjee, M.B., Katoch, D.C., Dube, G.S., Banerjee, K. (1981): Bounds for growth rate of perturbation in thermohaline convection. Proceedings of the Royal Society of London. Series A, 378, 301–304.
- [2] Bradley, R. (1978): Overstable electroconvective instabilities. The Quarterly Journal of Mechanics and Applied Mathematics, 31(3), 381–390.
- [3] Castellanos, A., Velarde, M. G. (1981): Electrohydrodynamic stability in the presence of a thermal gradient. Physics of Fluids, 24(10), 1784–1786.
- [4] Castellanos, A., Atten, P., Velarde, M.G. (1984): Oscillatory and steady convection in dielectric liquid layers subjected to unipolar injection and temperature gradient. Physics of Fluids, 27, 1607–1615.
- [5] Chandrasekhar, S. (1981). Hydrodynamic and Hydromagnetic Stability. Dover publication, Inc. New York.
- [6] Choudhary, S., Sunil (2019): Global stability for double-diffusive convection in a couple-stress fluid saturating a porous medium. Studia Geotechnica et Mechanica, 41(1), 13–20.
- [7] Del Río, J.A., Whitaker, S. (2001): Electrohydrodynamics in porous media. Transport in Porous Media, 44(2), 385-405.
- [8] El-Sayed, M.F., Moatimid, G.M., Metwaly, T.M.N. (2011): Nonlinear electrohydrodynamic stability of two superposed streaming finite dielectric fluids in porous medium with interfacial surface charges. Transport in Porous Media. 86, 559–578.
- [9] El-sayed, M.F., Moussa, M.H.M., Hassan, A.A.A., Hafez, N.M. (2014): Nonlinear electrohydromagnetic stability of conducting fluid flowing through porous medium down an inclined plane. Journal of Porous Media, 17(8), 685-703.
- [10] Gross, M.J., Porter, J.E. (1966): Electrically induced convection in dielectric liquids. Nature, 212, 1343-1345.
- [11] Ingham, D.B., Pop, I. (1998). Transport Phenomena in Porous Media. Pergamon, Oxford.
- [12] Jones, T.B. (1978), Electrohydrodynamically enhanced heat transfer in liquids-a review. in Advances in Heat Transfer, Academic Press, New York, 107–148.
- [13] Landau, L. D., Lifshitz, E. M. (1984): Course of Theoretical Physics-Electrodynamics of Continuous Media. Butterworth Heinemann, Oxford.
- [14] Maekawa, T., Abe, K., Tanasawa, I. (1992): Onset of natural convection under an electric field. International Journal of Heat and Mass Transfer, 35(3), 613-621.
- [15] Martin P.J., Richardson, A.T. (1982): Overstable electrothermal instabilities in a plane layer of dielectric liquid. Journal of Electrostatics, 12, 435-439.
- [16] Martin P.J., Richardson, A.T. (1984): Conductivity models of electrothermal convection in a plane layer of dielectric liquid. Journal of Heat Transfer, 106(1), 131-136.
- [17] Moreno, R.Z., Bonet, E.J., Trevisan, O.V. (1996): Electric alternating current effects on flow of oil and water in porous media. In: Proceedings of International Conference on Porous Media and their Applications in Science, Hawaii: Engineering and Industry, 147-172.
- [18] Nield, D.A., Bejan, A. (2006). Convection in Porous Media. 3rd edn. Springer-Verlag, New York.
- [19] Nield, D.A., Bejan, A. (2013). Convection in Porous Media. 4th edn. Springer-Verlag, New York.
- [20] Pellew A., Southwell, R.V. (1940). On the maintained convective motion in a fluid heated from below. In: Proceedings of the Royal Society of London. Series A, 176, 312-343.
- [21] Prakash, J. (2013): On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer. Journal of Porous Media, 16, 217-226.
- [22] Prakash, J., Vaid K., Bala, R. (2014). Upper limits to the complex growth rates in triply diffusive convection. Proceedings of the Indian National Science Academy, 80(1), 115-122.
- [23] Prakash, J., Kumari, K., Kumar, R. (2016): Triple diffusive convection in a maxwell fluid saturated porous layer: Darcy Brinkman-Maxwell Model. Journal of Porous Media, 19(10), 871–883.
- [24] Prakash, J., Manan, S., Kumar, P. (2018): Ferromagnetic convection in a sparsely distributed porous medium with magnetic field dependent viscosity revisited. Journal of Porous Media, 21(8), 749–762.
- [25] Prakash, J., Singh, V., Manan, S. (2017): On the limitations of linear growth rates in triply diffusive convection in porous medium. Journal of the Association of Arab Universities for Basic and Applied Sciences, 22, 91-97.
- [26] Ram, K., Prakash, J., Kumari, K., Kumar, P. (2022): Upper bounds for the complex growth rate of a disturbance in ferrothermohaline convection. Studia Geotechnica et Mechanica, 44(2), 114-122.
- [27] Roberts P.H. (1969): Electrohydrodynamic convection. Quarterly Journal of Mechanics and Applied Mathematics, 22(2), 211–220.
- [28] Rudraiah, N., Gayathri, M.S. (2009): Effect of thermal modulation on the onset of electrothermoconvection in a dielectric fluid saturated porous medium. ASME Journal of Heat Transfer. 131, 10100(1-15).
- [29] Saville, D.A. (1997): Electrohydrodynamics: The Taylor-Melcher leaky dielectric model, The Annual Review of Fluid Mechanics, 29, 27–64.
- [30] Shivakumara, I. S., Rudraiah, N., Lee, J., Hemalatha, K. (2011): The onset of Darcy–Brinkman electroconvection in a dielectric fluid saturated porous layer, Transport in Porous Media, 90, 509–528.
- [31] Shivakumara, I.S., Ng, C., Nagashree, M.S. (2011): The onset of electrothermoconvection in a rotating brinkman porous layer, International Journal of engineering science, 49, 646–663.
- [32] Takashima, M. (1976): The Effect of rotation on electrohydrodynamic instability, Canadian Journal of Physics, 54(3), 342–347.
- [33] Turnbull, R. J. (1968): Electroconvective instability with a stabilizing temperature gradient. I, Theory, Physics of Fluids, 11, 2588–2596.
- [34] Turnbull, R. J. (1968): Electroconvective instability with a stabilizing temperature gradient. II, Experimental Results, Physics of Fluids, 11, 2597–2603.
- [35] Turnbull, R. J. (1969): Effect of dielectrophoretic forces on the Bénard instability. Physics of Fluids, 12, 1809–1815.
- [36] Vafai, K. (2005). Handbook of Porous Media, CRC Press, Boca Raton.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79e3a85d-24b3-4d62-ad9a-5cfb4e00aac3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.