PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Highly efficient modified phosphogypsum building gypsum powder and environmentally friendly utilisation in self-levelling mortar

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stockpiling of phosphogypsum is a waste of land resources and also causes serious pollution to natural resources such as water and atmosphere. This paper explores the mechanism of efficiently modified phosphogypsum and constructs a model and evaluation system for heavy metal leaching and migration transformation. The modified phosphogypsum is used in self-levelling mortar to promote sustainable development within the phosphogypsum industry. It was shown that the phosphogypsum, first treated by ball milling for 5 min and then modified at low temperature of 165 °C, had a flexural strength of 2.35 MPa and a compressive strength of 4.28 MPa, which meets the requirement of strength of phosphogypsum of grade 2.0 in “Calcined gypsum” (GB/T9776-2008), and its flexural and compressive strength is 17.5% and 7% higher than 2.0 grade. This is due to the generation of better hydration activity of CaSO4・0.5H2O in the process of modification, which can hydrate to form more needle and columnar calcium sulphate dihydrate crystals, the crystals are interlaced, overlapped or overlapped with some lamellar structures, forming a network of gypsum dihydrate crystals, so that the gypsum blocks get good mechanical properties. The results of heavy metal environmental assessment and kinetic model fitting showed that there was no environmental and health risk for the high-efficiency modified phosphogypsum, and the Elovich model and second-level kinetic model were fitted to the leaching pattern of characteristic pollutants. Using ArcGIS and other interpolation, vertical distribution simulation, profiling with the increase of placement time of phosphogypsum in the content of heavy metal elements appeared to be a significant decrease, and the spatial distribution characteristics of heavy metals and altitude there was a negative correlation between modified phosphogypsum applied to self-levelling mortar, the flexural strength of 3.1 MPa, compressive strength of 8.9 MPa, met the standard requirements of “Gypsum based self-levelling compound for floor” (JC/T1023-2021). By analysing the LCA and carbon emission per tonne of self-levelling mortar based on the life cycle parity, it can be showed that terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, human carcinogenic toxicity were the main types of damages in all damage categories and the carbon emission in the raw material acquisition stage accounting for 79.8%.
Rocznik
Strony
art. no. e118, 2024
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
autor
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
autor
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
  • School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
autor
  • Sinochem Chongqing Fuling Chemical Co., LTD, Chongqing 408000, China
Bibliografia
  • 1. Perez-Lopez R, Castillo J, Sarmiento AM, Nieto JM. Assessment of phosphogypsum impact on the salt-marshes of the Tinto River (SW Spain): role of natural attenuation processes. Mar Pollut Bull. 2011;62(12):2787-96. https://doi.org/10.1016/j.marpolbul.2011.09.008.
  • 2. Men JH, Li YM, Cheng PF, Zhang ZM. Recycling phosphogypsum in road construction materials and associated environmental considerations: a review. Heliyon. 2022;8(11): e11518. https://doi.org/10.1016/j.heliyon.2022.e11518.
  • 3. Degirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr Build Mater. 2008;22(8):1857-62. https://doi.org/10.1016/j.conbuildmat.2007.04.024.
  • 4. Pérez-López R, Macías F, Ruiz Cánovas C, María Pérez-Moreno S. Pollutant flows from a phosphogypsum disposal area to an estuarine environment: an insight from geochemical signatures. Sci Total Environ. 2016;533:42-51. https://doi.org/10.1016/j.scitotenv.2016.02.070.
  • 5. Ilyas C, Aziz A, Mostafa E M, et al. Waste to wealth: synthesis of hydrocalumite from Moroccan phosphogypsum and aluminum wastes. Waste Manag. 2023;171:26-31. https://doi.org/10.1016/J.WASMAN.2023.08.020.
  • 6. Ennaciri Y, Ennaciri YZ, ElAlaoui BH, Bettach M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem Eng Commun. 2020;207(03):382-3923. https://doi.org/10.1080/00986 445.2019.1599865.
  • 7. Yelizaveta C, Olena Y, Viktoriia C, Hynek R. Phosphogypsum recycling: a review of environmental issues, current trends, and prospects. Appl Sci. 2021;11(4):1575. https://doi.org/10.3390/APP11041575.
  • 8. Contreras M, Teixeira SR, Santos GTA, Gazquez MJ, Romero M, Bolivar JP. Influence of the addition of phosphogypsum on some properties of ceramic tiles. Constr Build Mater. 2018;175:588-600. https://doi.org/10.1016/j.conbuildmat.2018.04.131.
  • 9. Tian T, Yan Y, Hu ZH, Xu YY, Chen YP, Shi J. Utilization of original phosphogypsum for the preparation of foam concrete. Constr Build Mater. 2016;115:143-52. https://doi.org/10.1016/j.conbuildmat.2016.04.028.
  • 10. Wu FH, Chen BJ, Qu GF, Liu S, Zhao CY, Ren YC, Liu XX. Harmless treatment technology of phosphogypsum: directional stabilization of toxic and harmful substances. J Environ Manag. 2022;311: 114827. https://doi.org/10.1016/j.jenvman.2022.114827.
  • 11. Li B, Shu JC, Yang L, Tao CY, Chen MJ, Liu ZH, Liu R. An innovative method for simultaneous stabilization/solidification of PO4 3- and F-from phosphogypsum using phosphorus ore flotation tailings. J Clean Prod. 2019;235:308-16. https://doi.org/10.1016/j.jclepro.2019.06.340.
  • 12. Kadirova ZC, Hojamberdiev M, Bo LL, Hojiyev R, Okada K. Ion uptake properties of low-cost inorganic sorption materials in the CaO-Al2O3-SiO2 system prepared from phosphogypsum and kaolin. J Clean Prod. 2014;83:483-90. https://doi.org/10.1016/j.jclepro.2014.06.084.
  • 13. Choudhary L, Bansal S, Kalra M, Dagar L. Mechanical evaluation of recycled aggregate mixes and its application in reclaimed asphalt pavement (RAP) stretch. Beni-Suef Univ J Basic Appl Sci. 2022;11:127. https://doi.org/10.1186/s43088-022-00302-3.
  • 14. Choudhary L, Sahu V, Dongre A, Tonk A. Macro- and microstructural durability investigations of sustainable ternary geopolymer concrete paver blocks. Eur Chem Bull. 2023;12:5474-94. https://doi.org/10.31838/ecb/2023.12.si6.472.
  • 15. Zhou J, Li XQ, Zhao Y, Shu Z, Wang YX, Zhang Y, Shen X. Preparation of paper-free and fiber-free plasterboard with high strength using phosphogypsum. Constr Build Mater. 2020;243: 118091. https://doi.org/10.1016/j.conbuildmat.2020.118091.
  • 16. Garg M, Minocha AK, Jain N. Environment hazard mitigation of waste gypsum and chalk: use in construction materials. Constr Build Mater. 2011;25(02):944-9. https://doi.org/10.1016/j.conbuildmat.2010.06.088.
  • 17. Wang W, Xia BL, Suo XY, Peng WJ, Zhang L, Cao YJ, Huang YK, Fan GX. Facile preparation of α-calcium sulfate hemihydrate whisker from by-product gypsum in chloride-free salt solution system. J Environ Chem Eng. 2023;11(5): 110385. https://doi.org/10.1016/j.jece.2023.110385.
  • 18. Dong M, Li JS, Lang L, Chen X, Jin JX, Ma W. Recycling thermal modified phosphogypsum in calcium sulfoaluminate cement: evolution of engineering properties and micro-mechanism. Constr Build Mater. 2023;373: 130823. https://doi.org/10.1016/j.conbuildmat.2023.130823.
  • 19. Lv XF, Xiang L. The generation process, impurity removal and high-value utilization of phosphogypsum material. Nanomaterials. 2022;12(17):3021. https://doi.org/10.3390/nano12173021.
  • 20. Potgieter JH, Potgieter SS, McCrindle RI, Strydom CA. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement. Cem Concr Res. 2003;33(8):1223-7. https://doi.org/10.1016/S0008-8846(03)00036-X.
  • 21. Fang J, Chen ZJ, Xing BL, Bao SX, Yong Q, Chi R, Yang SY, Ni BJ. Flotation purification of waste high-silica phosphogypsum. J Environ Manage. 2022;320: 115824. https://doi.org/10.1016/j.jenvman.2022.115824.
  • 22. Geraldo RH, Costa ARD, Kanai J, Silva JS, Souza JD, Andrade HMC, Goncalves JP, Fontanini PSP, Camarini G. Calcination parameters on phosphogypsum waste recycling. Constr Build Mater. 2020;256: 119406. https://doi.org/10.1016/j.conbuildmat.2020.119406.
  • 23. Cai Q, Jiang J, Ma B, Shao ZY, Hu YY, Qian BB, Wang LM. Efficient removal of phosphate impurities in waste phosphogypsum for the production of cement. Sci Total Environ. 2021;780: 146600. https://doi.org/10.1016/j.scitotenv.2021.146600.
  • 24. Chen S, Chen J, He X, et al. Micromicelle-mechanical coupling method for high-efficiency phosphorus removal and whiteness improvement of phosphogypsum. Constr Build Mater. 2022;354: 129220. https://doi.org/10.1016/j.conbuildmat.2022.129220.
  • 25. Neto JSA, Bersch JD, Silva TSM, Rodríguez ED, Suzuki S, Kirchheim AP. Influence of phosphogypsum purification with lime on the properties of cementitious matrices with and without plasticizer. Constr Build Mater. 2021;299: 123935. https://doi.org/10.1016/j.conbuildmat.2021.123935.
  • 26. Ennaciri Y, Zdah I, El Alaoui-Belghiti H, Bettach M. Characterization and purification of waste phosphogypsum to make it suitable for use in the plaster and the cement industry. Chem Eng Commun. 2020;207(3):382-92. https://doi.org/10.1080/00986445.2019.1599865.
  • 27. Zheng PK, Li WT, Ma Q, Xi L. Mechanical properties of phosphogypsum-soil stabilized by lime activated ground granulated blast-furnaceslag. Constr Build Mater. 2023;402: 132994. https://doi.org/10.1016/j.conbuildmat.2023.132994.
  • 28. Min CD, Shi Y, Lu XY, Liu ZX, Zhou YA. Cemented backfill using Ca(OH)2-pretreated phosphogypsum as aggregate: Hydration characteristics, structural features and strength development. Constr Build Mater. 2023;402: 133011. https://doi.org/10.1016/j.conbuildmat.2023.133011.
  • 29. Cao WX, Yi W, Peng JH, Li GG, Yi SH. Preparation of anhydrite from phosphogypsum: Influence of phosphorus and fluorine impurities on the performances. Constr Build Mater. 2022;318: 126021. https://doi.org/10.1016/j.conbuildmat.2021.126021.
  • 30. Ou L, Li R, Zhu HZ, Zhao HD, Chen RP. Upcycling waste phosphogypsum as an alternative filler for asphalt pavement. J Clean Prod. 2023;420: 138332. https://doi.org/10.1016/j.jclepro.2023.138332.
  • 31. Cao WX, Yi W, Peng JH, Li J, Yin SH. Recycling of phosphogypsum to prepare gypsum plaster: Effect of calcination temperature. J Build Eng. 2022;45: 103511. https://doi.org/10.1016/j.jobe.2021.103511.
  • 32. Guan QJ, Sui Y, Yu WJ, Bu YJ, Zeng CX, Liu CF, Zhang ZY, Gao ZY, Ru-an C. Moderately efficient leaching of rare earth elements from phosphogypsum via crystal regulation with EDTA-2Na during gypsum phase transformation and recovery by precipitation. Hydrometallurgy. 2022;214: 105963. https://doi.org/10.1016/j.hydromet.2022.105963.
  • 33. Yang L, Zhang YS, Yan Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J Clean Prod. 2016;127:204-13. https://doi.org/10.1016/j.jclepro.2016.04.054.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79e12bd1-39e2-47e9-8820-ff8a1f07a8be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.