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Consecutive-k-out-of-n (Con/k/n) system, a reconfigurable system, can improve the system 
performance by adjusting the redundancy and assignment of components. This paper aims 
to determine the optimal defensive strategy of Con/k/n systems under external risks. The de-
fensive capability of Con/k/n systems is evaluated based on real-time system reliability, and 
a defensive importance measure (DIM) is constructed to optimize components’ redundancy 
locally. To solve the proposed optimization model effectively, a DIM-based genetic algo-
rithm (DIGA) is developed by integrating the advantages of DIM’s local search with the glo-
bal search ability of the classical genetic algorithm (CGA). The numerical experiment under 
36 scenarios illustrates that DIGA is more effective than CGA verified by average defensive 
capability, robustness, and convergence generations. Moreover, the redundancy distribution 
analysis of Con/k/5 systems in the optimal defensive strategy shows that the redundancy of 
F(G) systems is in a spaced (continuous) way under spacing k-1 risk or continuous k risk.
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1. Introduction
Defensive strategies (redundancy and assignment of components) 

are essential to prevent severe catastrophic events, decreasing eco-
nomic losses from many other disasters. Some scholars have studied 
the negative effect of risk on the system performance, and the reported 
research work verified that effective defensive strategy can resist the 
degradation of system performance [8, 9, 33, 37]. So, risk events may 
cause enormous losses for the government when the defensive strategy 
is not appropriate. For example, the fires in New South Wales burned 
for 210 days before being wholly extinguished on July 18, 2019, burn-
ing 400 hectares, killing 33 people and more than 1 billion animals, 
and destroying 2,500 homes. Consecutive-k-out-of-n (Con/k/n) sys-
tem is arranged in a line consisting of n ordered components, involv-
ing the F system and G system, and the F(G) system fails(works) if 
and only if at least consecutive k components fail (work). Con/k/n 
system is widely used in quality control systems[21], flow transfer 
systems[40], sensor detection systems [16], production monitoring 
systems (PMS) [36], communication systems[17], performance-

sharing heating systems [38], and other applications[29]. Moreover, 
Con/k/n systems are reconfigurable systems whose performance can 
be improved by changing components’ positions, adding redundant 
components, or replacing components, which gives Con/k/n systems 
a more flexible way to protect against external risks. Therefore, it is 
necessary to evaluate the defensive capability of Con/k/n systems 
considering defensive strategies.

System resilience is an important indicator to evaluate the system’s 
ability to resist degradation or recover to its normal state[35]. The 
resilience assessment methods can be divided into three types: time-
based resilience, performance-based resilience, and data-based resil-
ience. Time-based resilience indexes consider the habitable time, trav-
el time, or recovery time. The length of time that a building can remain 
habitable after a prolonged power outage during extended periods of 
extreme weather is regarded as passive survivability to evaluate the 
thermal resilience of buildings [28]. By integrating and assessing the 
effect of recovery controls, time-based resilience is proposed to iden-
tify the impact of the evolution of recovery overtime on the critical 
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path [31]. A new time-based resilience measure is defined as the ratio 
of the integral of the normalized system performance within its maxi-
mum allowable recovery time after the disruption to the integral of the 
performance in the normal state [18]. The resilience of rail transit net-
work under incidents is defined as the speed of rail transit network re-
cover from the worst network performance under incidents to its orig-
inal state by considering the waiting time, in-vehicle travel time, and 
transfer time [24]. Performance-based resilience is evaluated by con-
sidering the system states or functionality loss. A performance-based 
resilience assessment method is proposed for engineered systems 
through functionality loss and associated monetary costs [26]. A com-
bined probabilistic framework is established by analyzing limit states 
associated with performance levels [3]. A quantitative framework for 
assessing system resilience is proposed by focusing on absorption, 
recovery, and adaptation to disruptions [34]. Data-based resilience 
is evaluated by utilizing the raw data to simulate the uncertainty of 
risk events. A data envelopment analysis framework for dynamic net-
works is developed by combining quality function deployment with a 
decision-making trial and evaluation laboratory to assess the system 
resilience [30]. A data-based uncertainty set is built to randomly gen-
erate the historical or forecast information of extreme weather events 
to measure system resilience [22]. Apriori-based disruption generator 
is established to simulate the disruption and its propagation based on 
real-life data, which can assess the system resilience accurately [13]. 
With the consideration of Con/k/n systems’ characteristics, the real-
time system reliability of Con/k/n systems considering the component 
redundancy and component assignment is available for evaluating the 
system resilience. So, the defensive capability of Con/k/n systems is a 
system ability to resist system performance degradation, which is the 
system resilience in preparation and responsive phases.

Increasing or enhancing the system resilience is one of the most 
heated topics under destructive disasters. The resilience of the trans-
portation network under a disaster is measured, and the resilience 
optimization model under configuration cost and crossing time con-
straints is constructed [20]. An adaptive robust optimization-based 
framework is developed to enhance the resilience of the interdepend-
ent critical infrastructure systems, which can evaluate the potential 
impacts of natural hazards on an infrastructure [11]. A tri-level pro-
tection-interdiction-restoration problem for interdependent networks 
is proposed to optimize system resilience [12]. A model is constructed 
to analyze and optimize the network resilience by machine learning 
to improve customer experiences at lower operational expenses [14]. 
System resilience can be increased by reinforcing the weakest com-
ponents to maximize the system resilience under a cost constraint [1]. 
An integrated method is established to get the resilience enhancement 
strategies of interdependent critical infrastructures by combining the 
hierarchical model with a predictive control-based dynamic model 
[23]. A two-stage stochastic mixed-integer linear programming meth-
od is developed to optimize the preparation and resource configura-
tion to enhance the resilience of power distribution systems [43]. The 
quantitative measures of the cyber-physical power system resilience 
applied in the existing literature are summarized, and the optimiza-
tion of system resilience focused on the optimal recovery sequence 
of components, identification and protection of critical nodes, and 
the enhancement of the coupling patterns between physical and cyber 
networks [39]. A comprehensive review of transmission networks fo-
cuses on the optimization models and methodologies to enhance the 
grid resilience by reconfiguration methods [4].

Importance theory is an effective tool to identify the weak links 
of system design, maintenance, and resource allocation, which can 
help reliability engineers quickly make the best decisions [32]. Im-
portance measure (IM) can improve the solving efficiency of com-
plex optimization problems in maintenance strategy[7, 42], and many 
scholars are utilizing IMs to enhance system resilience. Two IMs are 
proposed to enhance the system resilience by allocating resources to 
reduce their vulnerability or expedite their recovery [2]. The impor-
tance ranking of nodes in interdependent infrastructure networks is 

used in a heuristic algorithm to rank and prioritize infrastructure links, 
which can support decision-making for designing and managing the 
system resilience [6]. The resilience-based component importance for 
multi-state networks qualifies the impact of a component’s capacity 
improvement and recovery time on network resilience. The impor-
tance ranking of components determines the minimal recovery path 
based on a stochastic ranking method [41]. Resilience-based compo-
nent importance is introduced to optimize the infrastructure resilience 
under budgetary constraints [27]. The residual resilience-based IM 
is used to evaluate the importance of ports and routes by the Cope-
land method, and the restoration priority based on IM is developed to 
minimize the residual resilience [10]. The recovery priority of failed 
components after a disaster in the power grid system is determined by 
the IM, which is the influence of the failed components on the power 
grid resilience [5]. A series of component resilience IMs, evaluated by 
the Monte Carlo-based method, is used in a transportation network to 
reasonably allocate limited resources[19]. 

As illustrated by the existing literature, many studies have fo-
cused on evaluating resilience for networks and enhancing system 
resilience. However, the existing system resilience assessment cannot 
evaluate the resilience of  Con/k/n systems. In recent years, the re-
search on resilience importance measures has been increasingly used 
in various strategies of enhancing system resilience. In this paper, 
Con/k/n system is a kind of reconfigurable system having many flex-
ible ways to improve the system reliability, so the defensive capability 
analysis of Con/k/n systems based on the real-time system reliability 
is important to remain the system at a better performance level. The 
defensive strategy optimization model facing external risks under lim-
ited cost constraints is then presented. The proposed model’s decision 
variables (component redundancy and component assignment) are too 
tedious or difficult to achieve. The defensive importance measure is 
introduced to find the best redundancy adjustment using its advanced 
local search ability. The defensive importance measure-based optimi-
zation algorithm is developed by integrating the advantages of defen-
sive importance measure (local search ability) and genetic algorithms 
(global search ability).

The remainder of this paper is organized as follows. Section 2 
introduces the defensive strategy optimization under external risks. 
Section 3 describes the detailed process of defensive IM-based ge-
netic algorithm (DIMGA). Section 4 compares the performance of 
DIMGA and classical genetic algorithm (CGA). In Section 5, numeri-
cal experiments of Con/k/n systems are implemented to analyze the 
redundancy distribution of the optimal defensive strategy under the 
continuous or spacing risks. Finally, the research results and future 
research are summarized in Section 6.

2. Defensive strategy optimization under external 
risks

In order to clearly explain the calculation process of the defensive 
capability of Con/k/n systems, some assumptions are summarized as 
follows.

The system and all components have two states, working or (1) 
failure.
Components are independent of each other, and their lifetimes (2) 
obey the Weibull distribution.
The external risk mainly affects the shape parameters and scale (3) 
parameters of components’ lifetime distributions.
The impact degree on different positions depends on the exter-(4) 
nal risks’ direction, intensity, and occurrence time.
The defensive strategy involves the redundancy and assign-(5) 
ment of the component module.

2.1. Defensive capability of Con/k/n systems
The system defensive capability is a function related to the assign-

ment and redundancy of components, the lifetime of components, 
and environmental information. The defensive capability in [0, ]dt  of 
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Con/k/n systems is the ratio of the area enclosed by the actual system 
reliability and time axis to the area enclosed by the ideal system re-
liability and time axis. In order to describe the defensive capability 
clearly, Figure 1 depicts that the actual real-time system reliability 

1( )R t  decreases over time, and the area between the actual system re-
liability curve and the ideal system reliability represents the perform-
ance loss. Moreover, the ideal system reliability 0 ( ) 1R t = . Therefore, 
the defensive capability of Con/k/n systems is calculated by Equation 
(1):

Therefore, the defensive capability of Con/k/n systems is calcu-
lated by Equation (1):
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where ( )Rf t  is the defensive capability of the Con/k/n system 
at time t; N0 is the number of strips with the same width in the in-
terval [0, t], and the time length of each strip is 0Ntt∆ ≈ , so 

0
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Fig. 1. Actual and ideal real-time system reliability over time

The real-time reliability of the Con/k/n: F system with redundant 
components can be calculated by Equation (2) [15]:
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where n  is the number of component modules; in  is the number of re-
dundant components in module i; ijx  represents component module i is 

placed in position j; ( )( ) ( )( )( )1( ) 1 1 1 max( ,0) inns
j ij i i iip t x p t p t t== − − − −∑  

is the reliability of component module i placed in position j at time 
t; ( )ip t  is the reliability of component i at 
time t, and it  is the occurrence time of risk, 
which is regarded as the activation time of re-
dundant components in component module i; 

( , , , , )F
l ij iR t n k x n  is the system’s reliability at 

time t for Con/k/n: F system when component 
redundancy in  and assignment of component 
module ijx  are known. Particularly, 1 ( )=1FR t  
when n k< .

Similarly, the real-time reliability of the Con/
k/n: G system with component modules can be 
calculated by Equation (3) [15]:
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where ( ) 1 ( )s s
j jq t p t= − ; ( , , , , )G

l ij iR t n k x n  is the system’s reliability 
at time t for Con/k/n: G system; 1 ( )=0GR t  when n k< .

2.2. Detailed description of external risks
The detailed risk information is shown in Figure 2. Three types of 

external risks include continuous risks, equal spacing risks, and non-
equal spacing risks. The continuous risk means all the affected posi-
tions are continuous; equal spacing risk means the distance between 
two adjacent affected positions is the same, while the non-equal spac-
ing risk is different. The risk pattern defines the travel direction and 
risk effects: Pattern I means risks occur simultaneously with the same 
intensity; Pattern II means risks transits from left to right, and the 
position at the left side occurs earlier with stronger intensity; Pattern 
III is the opposite of Pattern II. So, the external risk mainly affects the 
components’ lifetime distribution parameters in different positions. 
The impact degree depends on the occurrence time and intensity of 
risks, which is related to the risk pattern.

2.3. Defensive strategy optimization under external risks
When the external risk information (occurrence time, risk types, 

risk patterns, and risk effects) is known, the defensive strategy optimi-
zation model can be constructed by considering the objective function, 
decision variables, and constraints. The objective is to maximize the 
defensive capability of Con/k/n systems, which can be calculated by 
Equation (1). The decision variable is the defensive strategy, includ-
ing the redundancy and assignment of components. The constraints 
mainly come from the position restriction of components, the reliabil-
ity limitations of components, the defensive cost, etc. Therefore, the 
mathematical model of defensive strategy optimization under external 
risks is listed as follows.
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Fig. 2. The types and patterns of external risks
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 01 ( 1)n
i ii c n C= + ≤∑  (9)

Equation (4) points out the decision variables (assignment of com-
ponent module ijx  and component redundancy in ) and the evaluation 
method of the system defensive capability; Equation (5) states that 
component module i can only select one position and Equation (6) 
means that position j can only accept one component module, and 
these two constraints are used to determine the unique assignment of 
components; Equation (7) defines the reliability of component mod-
ules at the position j at time t; Equation (8) evaluates the component 
reliability at time t in component module i; Equation (9) represents 
the constraints of defensive cost for achieving the specific defensive 
strategy. Where ic  is the unit price of component i and its redundant 
components; 0C  is the maximum cost of defensive configuration; in  
is the redundant level of component i, so the defensive cost of compo-
nent module i is equal to ( 1)i ic n + .

3. Defensive IM-based genetic algorithm
To better obtain the optimal defensive strategy, a DIMGA is devel-

oped by combining the advantages of genetic algorithm and DIM.

3.1.	 The	definition	of	DIM
DIM is defined as the change in system defensive capability after 

adding a redundant component, and the calculation method is shown 
as follows:

 ( | , ) ( 1, ) ( , )D R R
R i i iI i n t f n t f n t= + −  (10)

where ( | , )D
R iI i n t  is the DIM of component i at time t when its re-

dundancy level is in ; ( 1, )R
if n t+  is the system defensive capability 

after adding a redundant component for component i at time t. 

3.2. DIM-based genetic algorithm
CGA is a general and famous algorithm with the standard process 

to solve various optimization problems. Therefore, the flow chart of 
DIMGA is developed based on the CGA, shown in Figure 3, and some 
key subprocesses of DIMGA are introduced in detail as follows.

Real-number encoding method(1) 
A 2 n×  matrix with real-number elements can represent a possi-

ble defensive strategy. The first row represents the arrangement of 
component modules, and the second row is the redundancy level of 
component modules. 

Crossover operations(2) 
The algorithm uses the single-point crossover to recombine genes 

of two individuals. If the recombinant genes are not adjusted, dupli-
cate genes may appear in an individual, which is not allowed in a 
component arrangement. The detailed adjustment method to eliminate 
the duplicate genes is listed as follows. The missing genes in the com-
ponent arrangement are identified at first, and then the selected genes 
with the larger serial number are randomly assigned to the available 
positions.

Mutation operation(3) 
Mutation operation is to adjust the gene of an individual according 

to the mutation probability mp . If the generated random number in [0, 
1] is larger than mp , the individual does not perform the mutation. 
Otherwise, select a mutation point from two rows in an individual: 
if the mutation point is in the first row, exchanging the component 
at the mutation point with other components; if the mutation point is 
in the second row, randomly selecting a component and reducing its 
redundancy by one.

DIM-based local search method.(4) 
The DIM-based local search method is used to adjust the redun-

dancy of components, which is a two-step adjustment method. The 

first step is to find the component module with the least reduction of 
system defensive capability when reducing a redundant component 
of this module; the second step is to add a redundant component for a 
component module with the largest DIM under the condition of cost 
constraints. 

For each individual in the population, perform the following op-• 
erations, which is the detailed process of the DIM-based local 
search method.
Randomly generate a number in the interval [0, 1]. If it is greater • 
than the specified local search probability lp , go to the next step; 
otherwise, output the initial individual.
Select the component module by  • 
 * arg max{ | ( | 1, ), 1,2, , }D

R ii i I i n t i n= − − = ⋅ ⋅ ⋅ , and reduce one re-
dundant component in module i.
Under the cost constraint, select the com-• 
ponent module *j  with the largest DIM by 

* *
* arg max{ | ( | , 1, ), , 1,2, , }D

R j ji i
j j I j n n t c c j n= − − ≤ = ⋅ ⋅ ⋅ , and 

add one redundant component for the component module *j .

Termination conditions. One is the maximum running genera-(5) 
tions, and the other is the maximum continuous generations in 
which the solution is unchanged. The algorithm stops if either 
of the two termination conditions is met. 

4. Performance comparison of DIMGA and CGA
In order to illustrate the advantages of DIM, the simulation experi-

ments under different risks are implemented by comparing the per-
formance of DIMGA and CGA. The difference between CGA and 
DIMGA is that CGA does not perform the DIM-based local search 
method, and other steps are the same as DIMGA.

4.1. Experimental design
The simulation experiments use MATLAB to perform related pro-

grams and obtain simulation results. The software version and hard-
ware configuration are summarized as follows.

Software version: MATLAB 2016b.• 
Hardware configuration: Intel(R) Core (TM) i7-9750H CPU @ • 
2.60 GHz, 2.59 GHz; 16 GB.

Fig. 3 The flowchart of DIMGA
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System parameters(1) 
In the simulation experiment, six systems (n = 5, k = 3; n = 10,  

k = 3; n = 15, k = 6; n = 20, k = 6; n = 25, k = 8; n = 30, k = 10) with 
different scales are selected respectively for Con/k/n: F(G) systems. 
Each system is set with two different amounts of tasks and three types 
of risk modes. So there are 36 different scenarios (six 6 different sys-
tem sizes, two risk events, and three risk modes) of F systems or G 
systems, whose symbols are shown in Table 1.

The occurrence time of risks in Pattern I is set as 3.5. The moment 
of risk occurrence in Pattern II is randomly generated in the interval 
[2, 7] in ascending order, but Pattern III is generated in descending 
order. The scale parameters α  from component 1 to component n are 
randomly generated in the interval [1,3] in descending order, and the 
shape parameters are randomly generated in the same way. Similarly, 
the impact factors a (for scale parameters) and b (for shape param-
eters) are randomly generated in the interval [0.3,1] by the descending 
order and ascending order, respectively. The evaluation time of the 
system defensive capability is 10. ic  is randomly generated in the 
interval [3, 10], and 0C  is equal to 

1
2 n

ii
c

=∑ ; 0.1t∆ = .
Note: ‘Sym.’ represents ‘Symbol’.

Algorithm parameters(2) 
The algorithm parameters of DIMGA and CGA are listed as follows. 

The population size is 100, the maximum generation max 100G = , the 
crossover probability 0.9cp = , the mutation probability pm=0.1, the 
local search probability 0.1lp = , and the convergence limitation is 50.

Indicators of algorithm performance(3) 
For F systems and G systems, DIMGA and CGA are executed 50 

times for 36 scenarios separately, and three indicators analyze the 
simulation results: the average defensive capability, the robustness of 

the algorithm based on the coefficient of variation (CV), and the con-
vergence of algorithm measured by the mean of running generations.

4.2. Analysis of experimental results
The optimization results show the performance of these two algo-

rithms (GA and DIMGA) based on the three mentioned indexes, and 
each algorithm runs 50 times.

System defensive capability of DIMGA and CGA(1) 
The mean system defensive capabilities of 36 typical systems run-

ning 50 times for F and G systems are shown in Figures 4 and 5, 
respectively.

For F systems, all the mean defensive capability of DIMGA is 
larger than that of CGA because we can see the red section in each bar 
from Figure 4. The results of mean capability for some small-scale 
systems (F2, F3, F4, and F6) obtained by two algorithms are close, 
and the results of DIMGA are a bit higher than that of CGA. The 
maximum difference of defensive capability is 0.0723 in F30, and 
the minimum difference of defensive capability is 0.0051 in F4. The 
average improvement of the mean defensive capability obtained by 
DIMGA is 0.0372 higher than that of CGA, which is 5.97% higher 
than CGA.

For G systems, all the mean defensive capability of DIMGA is 
larger than that of CGA because we can see the red section in each 
bar from Figure 5. The mean capability of some small-scale systems 
(G1, G2, G5, and G6) obtained by two algorithms is close, and the 
results of DIMGA are a bit higher than that of CGA. The maximum 
difference of defensive capability is 0.0769 in G12, and the minimum 
difference of defensive capability is 0.0039 in G2. The average im-
provement of the mean defensive capability obtained by DIMGA is 
0.0329 higher than that of CGA, which is 11.39% higher than CGA.

Table 1 The symbols of Con/k/n: F(G) systems under 36 scenarios

Sym. n k Risk 
num

Risk 
Pattern Sym. n k Risk 

num
Risk 

Pattern Sym. n k Risk 
num

Risk 
Pattern

F1 5 3 2 I F25 25 8 8 1 F13 15 6 5 I

F2 5 3 2 II F26 25 8 8 2 F14 15 6 5 II

F3 5 3 2 III F27 25 8 8 3 F15 15 6 5 III

F4 5 3 4 I F28 25 8 16 1 F16 15 6 10 I

F5 5 3 4 II F29 25 8 16 2 F17 15 6 10 II

F6 5 3 4 III F30 25 8 16 3 F18 15 6 10 III

F7 10 3 3 I F31 30 10 10 1 F19 20 6 6 I

F8 10 3 3 II F32 30 10 10 2 F20 20 6 6 II

F9 10 3 3 III F33 30 10 10 3 F21 20 6 6 III

F10 10 3 6 I F34 30 10 20 1 F22 20 6 12 I

F11 10 3 6 II F35 30 10 20 2 F23 20 6 12 II

F12 10 3 6 III F36 30 10 20 3 F24 20 6 12 III

F13 15 6 5 I G1 5 3 2 1 G25 25 8 8 I

F14 15 6 5 II G2 5 3 2 2 G26 25 8 8 II

F15 15 6 5 III G3 5 3 2 3 G27 25 8 8 III

F16 15 6 10 I G4 5 3 4 1 G28 25 8 16 I

F17 15 6 10 II G5 5 3 4 2 G29 25 8 16 II

F18 15 6 10 III G6 5 3 4 3 G30 25 8 16 III

F19 20 6 6 I G7 10 3 3 1 G31 30 10 10 I

F20 20 6 6 II G8 10 3 3 2 G32 30 10 10 II

F21 20 6 6 III G9 10 3 3 3 G33 30 10 10 III

F22 20 6 12 I G10 10 3 6 1 G34 30 10 20 I

F23 20 6 12 II G11 10 3 6 2 G35 30 10 20 II

F24 20 6 12 III G12 10 3 6 3 G36 30 10 20 III
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Robustness analysis of DIMGA and CGA(2) 
The coefficient of variation is a ratio of standard variance to the 

mean value, which is used to evaluate the robustness of the algorithms. 
The smaller the CV, the more robust the algorithm is. From Figure 6, 
the results obtained by CIMGA in almost all of the F systems are 
smaller than that of CGA, except for F5 and F6. The results of 36 typi-
cal F systems illustrate that CIMGA has better robustness than CGA. 
For G systems, the CVs of CIMGA in almost all cases are smaller than 
that of CGA in G1~G28, but the CVs of CIMGA are larger than that 
of CGA in the large-scale systems in G29~G36 in Figure 7. In the G 
systems, although the CVs of DIMGA are somewhat larger than that 
of CGA, the differences between them are not significant, so the ro-
bustness of the two algorithms is close. CIMGA also keeps better ro-
bustness in F systems and most G systems, so CIMGA is suitable for 
solving defensive optimization problems, especially for F systems.

Convergence generations of DIMGA and CGA(3) 
The convergence generation represents the speed of the algorithm 

reaching the optimal solution. The smaller the convergence genera-
tion, the faster the convergence speed of the algorithm. For F sys-
tems, about 75% of typical systems have lower average convergence 
generations performing the DIMGA, shown in Figure 8. However, in 
G systems, with the increase of system scale, the mean convergence 
generations of DIMGA are slightly larger than that of CGA, which 
accounts for 41.67%, shown in Figure 9.

Therefore, DIMGA performs well in terms of mean system defen-
sive capability in all typical F and G systems, and robustness in most 
typical F and G systems. Although the average running generations 
of DIMGA are a bit larger than that of CGA in some typical sys-
tems, all the mean convergence generations of these two algorithms 
are similar. Furthermore, DIMGA can still be used effectively to solve 

Fig. 4. Mean defensive capability of DIMGA and CGA for 36 typical F sys-
tems

Fig. 5. Mean defensive capability of DIMGA and CGA for 36 typical G sys-
tems

Fig. 7. CVs of DIMGA and CGA for 36 typical G systemsFig. 6. CVs of DIMGA and CGA for 36 typical F systems

Fig. 8. Mean convergence generations of DIMGA and CGA for 36 typical F 
systems

Fig. 9. Mean convergence generations of DIMGA and CGA for 36 typical G 
systems
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the defensive optimization problem of G and F systems, although the 
performance difference between DIMGA and CGA in some systems 
is narrow. Therefore, DIMGA is more suitable for solving the defen-
sive capability optimization problem of F systems.

5. Numerical examples
To analyze the relationship between component redundancy and 

assignment of a component module, the batch sampling-based qual-
ity control systems are taken as numerical examples to consider the 
optimal defensive strategy. Generally, continuous k risks have a great 
influence on the reliability of Con/k/n: F systems, while equal spac-
ing k-1 risks have a greater influence on the reliability of G systems. 
Therefore, two types of risks (continuous k & equal spacing k-1) are 
taken as examples to analyze the changes in components’ redundancy 
of the optimal assignment under different risks for F systems and G 
systems with n = 5.

5.1. Cases design under continuous and equal spacing risks
Combining three risk patterns with two risk types (continuous k & 

equal spacing k-1), the optimal defensive strategies under three sys-
tem scales (n = 5, k = 2; n = 5, k = 3; n = 5, k = 4) are analyzed. So, 
there are 30 cases for Con/k/5 systems under continuous k risks, listed 

in Table 2, while there are 21 cases for Con/k/5 systems under equal 
spacing k-1 risks in Table 3.

To guarantee the effectiveness of the final defensive strategy, the 
optimal defensive strategy is obtained by performing DIMGA 5 times 
and selecting the maximum one.

5.2. Result discussion
To illustrate the redundancy and assignment of component module 

in the optimal defensive strategy clearly, a new representation of de-
fensive strategy is developed based on a box with two numbers, and 
an example is shown in Figure 10. The number at the upper left green 
box represents the component index in the corresponding position, 
and the number in the center is the number of redundant components 
in the corresponding position. In this example, the assignment of a 
component module from position 1 to position 5 is 3, 2, 4, 1, 5, re-
spectively, and the component redundancy from position 1 to position 
5 is 0, 2, 3, 2, 0, respectively. The shade of the background color rep-
resents the intensity of the risk. The darker the color, the greater the 
risk intensity and the earlier the risk occurs.

The relationship between the redundancy position and risk distri-
bution in Con/k/5: F systems under continuous k risks for 30 cases is 
shown in Figure 11. When k = 2, the F system mainly considers add-
ing redundant components in positions 2 and 4 because the number 
of redundant components in these two positions are non-zero positive 

integers from C1 to C15. Moreover, redundant com-
ponents should be added at least in one risk position. 
When k = 3, the F system mainly adds redundant 
components in positions 1 and 3. When k = 4, C25, 
C26, and C27 add redundant s components in posi-
tions 1 and 4, while C28, C29, and C30 add redun-
dant components in positions 4 and 5. For F systems 
under continuous k risks, the redundant components 
should be distributed in the spaced way, and the po-
sition k must add the redundant components.

The relationship between the redundancy posi-
tion and risk distribution in Con/k/5: G systems 
under continuous k risks for 30 cases is shown in 
Figure 12. In G systems, when k = 2, C1, C2, and C3 
have two continuous two risks, and the redundant 
components are added in positions 4 and 5. From 
C4 to C15, there are two continuous risks, and all 
the redundant components are added in the position 
where the risk occurs. The ways of adding redun-
dant components for cases when k = 3 and 4 are 
similar to when k = 2, and all the redundant com-
ponents are added to the position where risks occur. 
Therefore, redundant components in G systems un-
der the continuous k risks are added in a continuous 
way, and the distribution of redundant components 
is consistent with the affected positions.

The relationship between the redundancy po-
sition and risk distribution in Con/k/5: G systems 
under continuous k risks for 30 cases is shown in 
Figure 12. In G systems, when k = 2, C1, C2, and C3 
have two continuous two risks, and the redundant 
components are added in positions 4 and 5. From 
C4 to C15, there are two continuous risks, and all 
the redundant components are added in the position 
where the risk occurs. The ways of adding redundant 
components for cases when k = 3 and 4 are similar 
to when k = 2, and all the redundant components are 
added to the position where risks occur. Therefore, 
redundant components in G systems under the con-
tinuous k risks are added in a continuous way, and 
the distribution of redundant components is consist-
ent with the affected positions.

Table 2 All cases under continuous k risks for Con/k/5 systems

Symbol k Risk distribution Patterns Symbol k Risk distribution Patterns

C1 2 [1 1 0 1 1] I C16 3 [1 1 1 0 0] I

C2 2 [1 1 0 1 1] II C17 3 [1 1 1 0 0] II

C3 2 [1 1 0 1 1] III C18 3 [1 1 1 0 0] III

C4 2 [1 1 0 0 0] I C19 3 [0 1 1 1 0] I

C5 2 [1 1 0 0 0] II C20 3 [0 1 1 1 0] II

C6 2 [1 1 0 0 0] III C21 3 [0 1 1 1 0] III

C7 2 [0 1 1 0 0] I C22 3 [0 0 1 1 1] I

C8 2 [0 1 1 0 0] II C23 3 [0 0 1 1 1] II

C9 2 [0 1 1 0 0] III C24 3 [0 0 1 1 1] III

C10 2 [0 0 1 1 0] I C25 4 [1 1 1 1 0] I

C11 2 [0 0 1 1 0] II C26 4 [1 1 1 1 0] II

C12 2 [0 0 1 1 0] III C27 4 [1 1 1 1 0] III

C13 2 [0 0 0 1 1] I C28 4 [0 1 1 1 1] I

C14 2 [0 0 0 1 1] II C29 4 [0 1 1 1 1] II

C15 2 [0 0 0 1 1] III C30 4 [0 1 1 1 1] III

Table 3 All cases under interval k-1 risks for Con/k/5 systems

Symbol k Risk distribution Pattern Symbol k Risk distribution Pattern

S1 2 [1 0 1 0 1] I S12 2 [0 0 1 0 1] III

S2 2 [1 0 1 0 1] II S13 2 [1 0 0 1 0] I

S3 2 [1 0 1 0 1] III S14 2 [1 0 0 1 0] II

S4 2 [1 0 1 0 0] I S15 3 [1 0 0 1 0] III

S5 2 [1 0 1 0 0] II S16 3 [0 1 0 0 1] I

S6 2 [1 0 1 0 0] III S17 3 [0 1 0 0 1] II

S7 2 [0 1 0 1 0] I S18 3 [0 1 0 0 1] III

S8 2 [0 1 0 1 0] II S19 3 [1 0 0 0 1] I

S9 2 [0 1 0 1 0] III S20 3 [1 0 0 0 1] II

S10 2 [0 0 1 0 1] I S21 3 [1 0 0 0 1] III

S11 2 [0 0 1 0 1] II
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The relationship between the redundancy position and risk distri-
bution in Con/k/5: F systems under equal spacing k-1 risks for 21 
cases is shown in Figure 13. When k = 2, the risk interval is 1; if the 
risk in the first position occurs, there will be three risk events from S1 
to S6; and when there is no risk event in the first position, there will 
be two risk events from S7 to S12. When three risk events occur, the 
redundant components are added to the affected positions in S1, S2, 
and S3; while the redundant components are added in the first four 
positions in S4, S5, S6. When two risk events occur, the redundant 
components are added to the affected positions in S7, S8, and S9, 
while the redundant components are added to the affected positions 
and their adjacent positions in S10, S11, and S12 in a spaced way. In 
summary, in the cases of spacing k risks, the redundancy in F systems 
should be distributed in a spaced way, and redundant components 
should be added to the affected positions as a priority.

The relationship between the redundancy position and risk distribu-
tion in Con/k/5: G systems under equal spacing k-1 risks for 21 cases 
is shown in Figure 14. When k = 2, the risk spaced distance is 1, and 
the redundant components are allocated to two consecutive positions, 
one is the affected position, and the other is its adjacent unaffected 
positions. When k = 3, the spaced distance is 2, and the redundant 
components are allocated to three continuous positions, and one of 
them is the affected positions. When k = 4, the spaced distance is 3, 
adding redundancy to the components in four continuous positions, 
and one of the components is in affected positions. In conclusion, G 

systems in 21 cases show that redundancy is added continuously. Pri-
ority is given to adding redundancy to the affected positions and their 
adjacent positions, and the number of positions to add redundancy is 
equal to k.

5.3. An example of PMS
PMS is a typical con/k/n: F system, which consists of n monitors 

arranging parallel with the same distance, and the PMS fails once at 
least consecutive k monitors fail at the same time because of the ap-

pearance of the blind area [25]. Considering the monitoring distance 
of each monitor is k0 unit distance, all the distance between two ad-
jacent monitors in Con/k/n system is k0/2k unit distance. To better 
understand the structure of PMS, an example of PMS (Con/3/10: F 
system) is shown in Figure 15. In this example, the monitoring dis-
tance of each monitor k0 is 30 meters, so the distance between two 
monitors on the same side is k0/2k = 5 meters.

In order to verify the results of numerical experiments, the defen-
sive strategy of Con/3/10: F system under different risk types and risk 
patterns is analyzed in this example of PMS. Assuming that the exter-
nal disturbs can affect the parameters of a and b for the components 
under the risks. Considering the monitors are electronic products and 
their lifetime is about 20000 ~ 50000 hours, so the lifetime follows 
the exponential distribution under the normal work condition with pa-
rameters 42 ~ 5 10iα = ×  hours and 1iβ = . But the external disturbs 
may affect the impact factors a (for scale parameters) and b (for shape 
parameters). To analyze the optimization of defensive strategy, the ex-
ternal risk begins at the moment corresponding to the 10000th hours 
and lasts for 1200 hours, and the risks include continuous k risks un-
der Patterns I and II & equal spacing k-1 risks under Patterns I and 
II. The parameters of the system, algorithm, and risk information are 
listed in Table 4.

By implementing the DIMGA, the optimal defensive strategy and 
redundancy distribution are listed in Table 5. Under continuous k 
risks, the optimal system resilience of Pattern I and II are both 0.9990, 

Fig. 12. The redundancy distribution of Con/k/5: G systems under continuous  
k risks

Fig. 14. The redundancy distribution of Con/k/5: G systems under equal spac-
ing k-1 risks

Fig. 13. The redundancy distribution of Con/k/5: F systems under equal spac-
ing k-1 risks

Fig. 11. The redundancy distribution of Con/k/5: F systems under continuous  
k risks

Fig. 10. An example of the new representation for the defensive strategy
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and the cost consumption is 6988 yuan and 6972 
yuan, respectively. We can find that all the re-
dundant components in PMS under continuous 
risks are distributed in a spaced way and position 
k has been added the redundant components. 
Under the equal spacing k-1 risks, the optimal 
system resilience of Pattern I is 0.9986 while the 
cost consumption is 6994, and the optimal sys-
tem resilience of Pattern II is 0.9984 while the 
cost is 6947. The redundancy distribution of two 
patterns is arranged in a spaced way, and most 
of the affected positions have been added the 
redundant components. Therefore, the results of 

Fig. 15. The structure of PMS example (Con/3/10: F system)

Table 4. Parameters in the example of PMS (Con/3/10: F system)

Parameters Values

System parameters
[42400, 39700, 37800, 35600, 32500, 31600, 31500, 28600, 24700, 22700]α =  

hours, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]β = , n = 10, k = 3, C0 = 7000 yuan, 
[500, 473, 453, 431, 399, 390, 389, 360, 320, 300]cc =  yuan, k0 = 30 meters.

Algorithm Parameters Population size: 200, max 400G = , 0.1lp = , 0.1mp = , pc = 0.9, convergence limitation: 100.

Continuous k risk under 
Pattern I

risk start time: t1=t2=t3=10000 hours, t = 11200 hours, [0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1]a = , 
[0.9, 0.9, 0.9, 1, 1, 1, 1, 1, 1, 1]b =

Continuous k risk under 
Pattern II

risk start time: t1=t2=t3=10000 hours, t = 11200 hours, [0.5, 0.7, 0.9, 1, 1, 1, 1, 1, 1, 1]a = , 
[0.6, 0.8, 0.95, 1, 1, 1, 1, 1, 1, 1]b =

Equal spacing k-1 risk 
under Pattern I

risk start time: t1=t4=t7=t10=10000 hours, t = 11200 hours, [0.7, 1, 1, 0.7, 1, 1, 0.7, 1, 1, 0.7]a = , 
[0.9, 1, 1, 0.9, 1, 1, 0.9, 1, 1, 0.9]b =

Equal spacing k-1 risk 
under Pattern II

risk start time: t1=t4=t7=t10=10000 hours, t = 11200 hours, [0.6, 1, 1, 0.7, 1, 1, 0.8, 1, 1, 0.9]a = , 
[0.5, 1, 1, 0.6, 1, 1, 0.7, 1, 1, 0.8]b =

Table 5. Optimal defensive strategy under different risk patterns

Risk information Index Results

Continuous k risks under 
Pattern I

System resilience 0.9990

Cost 6988

Redundancy 
distribution

9
0

8 5 1 7
0 2 0 1

4
2

6 2 3 10
0 1 1 0

Continuous k risks under 
Pattern II

System resilience 0.9990

Cost 6972

Redundancy 
distribution

9
0

10 3 1 4
0 2 0 2

2
0

7 5 6 8
0 3 0 0

Equal spacing k-1 risks under 
Pattern I

System resilience 0.9986

Cost 6994

Redundancy 
distribution

5
0

1 8 2 7
0 2 1 1

4
0

9 3 6 10
2 1 0 1

Equal spacing k-1 risks under 
Pattern II

System resilience 0.9984

Cost 6947

Redundancy 
distribution

10
0

5 3 8 1
0 2 1 0

4
1

6 2 7 9
1 1 1 0
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this PMS example also verified the distribution rules of F systems in 
Section 5.2.

6. Conclusions
In this paper, the DIMGA is developed to get the optimal defensive 

strategy by integrating the advantages of DIM and GA under different 
external risks (three risk types & three risk patterns). The redundancy 
distribution rules can be summarized as follows. Under continuous k 
risks or spacing k-1 risks, the redundancy distribution of F systems 
under continuous risks should be in the spaced way, while G systems 

should be in a continuous way. This distribution rule can be applied to 
the redundancy allocation for large-scale systems when the associated 
complex algorithm is not considered. In the future, we also need to 
consider the uncertainty of the external risks to extend the application 
fields of the proposed method.
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