Identyfikatory
Warianty tytułu
The application of molecularly imprinted polymer-based materials and their influence on the development of supramolecular chemistry
Języki publikacji
Abstrakty
Molecularly Imprinted Polymers (MIPs) are the group of polymers that possess an ability to selective recognize analytes or groups of analytes, which are similar by their structural construction. The recognizing ability, which is generated during the synthesis of material, is determined by various factors such as shape, size, and the presence of functional groups in the MIP cavity. This molecular recess is created as a result of removing the specific analyte from the inclusive complex (polymeranalyte). Thanks to the valuable properties of molecularly imprinted polymers, these materials are commonly used in various fields. The multitude of their applications results from their properties such as high physical stability to harsh chemical and physical conditions, straightforward preparation, remarkable robustness, excellent reusability, and relative low-cost synthesis. Due to the attractiveness of MIPs widely demonstrated in the literature, as well as the possibilities of their application in various fields, these materials also have gained the favor of Professor Grzegorz Schroeder’s research group, in which numerous scientific works devoted to the subject of their use have been published.
Wydawca
Czasopismo
Rocznik
Tom
Strony
491--507
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
- Studentka Wydziału Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu
autor
- Wydział Chemii, Uniwersytet im. Adama Mickiewicza w Poznaniu
Bibliografia
- [1] R. Suedee, Pharmaceutica Analytica Acta, 2013, 4, 1, 2013.
- [2] K. Haupt, K. Mosbach, Chemical Reviews, 2000, 100, 2495.
- [3] G. Vasapollo et al., International Journal of Molecular Sciences, 2011, 12, 5908.
- [4] L. Chen, S. Xu, J. Li, Chemical Society Reviews, 2011, 40, 2922.
- [5] G. Wulff, Angewandte Chemie, 2001, 107, 1958.
- [6] H. Yan, K. Ho Row, Int. J. Mol. Sci, 2006, 7, 155.
- [7] K. Mosbach, Trends in Biochemical Sciences , 1994, 19, 9.
- [8] M.J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson, J. Am. Chem. Soc., 1995, 117, 7105.
- [9] L. Chen, X. Wang, W. Lu, X. Wu, and J. Li, Chemical Society Reviews, 2016, 45, 2137.
- [10] E. Caro, R.M. Marcé, F. Borrull, P.A.G. Cormack, D.C. Sherrington, TrAC - Trends in Analytical Chemistry, 2006, 25, 143.
- [11] O. Ramström, L. Ye, P.-E. Gustavsson, Chromatographia, 1998, 48, 197.
- [12] A. Martín-Esteban, TrAC - Trends in Analytical Chemistry,2013, 45. 169.
- [13] C. Lai et al., Applied Surface Science, 2016, 390, 368.
- [14] M.J. Whitcombe et al., Chemical Society Reviews, 2011, 40, 1547.
- [15] J. Matsui, I.A. Nicholls, I. Karube, K. Mosbach, J. Org. Chem., 1996, 61, 5414.
- [16] M. Cegłowski, J. Kurczewska, P. Ruszkowski, G. Schroeder, European Polymer Journal, 2019, 118, 328.
- [17] M. Cegłowski, V.V. Jerca, F.A. Jerca, R. Hoogenboom, Pharmaceutics, 2020, 12, 506.
- [18] J. Kurczewska, M. Cegłowski, P. Pecyna, M. Ratajczak, M. Gajęcka, G. Schroeder, Materials Letters, 2017, 201, 46.
- [19] M. Guć, B. Messyasz, G. Schroeder, Science of the Total Environment, 2021, 772, 145074.
- [20] M. Cegłowski et al., Chemistry of Materials, 2022, 34, 84.
- [21] M. Guć, S. Rutecka, G. Schroeder, Biomolecules, 2020, 10, 1.
- [22] M. Pawlaczyk, G. Schroeder, ACS Applied Polymer Materials, 2021, 3, 956.
- [23] M. Cegłowski, M. Smoluch, E. Reszke, J. Silberring, G. Schroeder, Analytical and Bioanalytical Chemistry, 2017, 409, 3393.
- [24] M. Cegłowski, J. Kurczewska, P. Ruszkowski, J. Liberska, G. Schroeder, Colloids and Surfaces B: Biointerfaces, 2019, 182, 110379.
- [25] M. Pawlaczyk, M. Guć, G. Schroeder, RSC Advances, 2021, 11, 25334.
- [26] S.S. Lin et al., J. Trauma Infect. Crit. Care, 1999 47, 136.
- [27] J. Kurczewska, P. Sawicka, M. Ratajczak, M. Gajęcka, and G. Schroeder, International Journal of Pharmaceutics, 2015, 496, 526.
- [28] A.L. Lakes, R. Peyyala, J.L. Ebersole, D.A. Puleo, J.Z. Hilt, T.D. Dziubla, Biomacromolecules, 2014, 15, 3009.
- [29] D. Cunliffe, A. Kirby, C. Alexander, Advanced Drug Delivery Reviews, 2005, 57, 1836.
- [30] A. K. Singla, A. Garg, D. Aggarwal, International Journal of Pharmaceutics, 2002, 235, 179.
- [31] C. Carvalho et al., Current Medicinal Chemistry, 2009, 16, 3267.
- [32] N. Dand, P. Patel, A. Ayre, V. Kadam, Chron. Young Sci. , 2013, 4, 94.
- [33] B. Verbraeken, B.D. Monnery, K. Lava, R. Hoogenboom, European Polymer Journal, 2017, 88, 451.
- [34] N. Adams, U.S. Schubert, Advanced Drug Delivery Reviews, 2007, 59, 1504.
- [35] M. Glassner, M. Vergaelen, R. Hoogenboom, Polymer International, 2018, 67,32.
- [36] R. Hoogenboom, Angewandte Chemie - International Edition, 2009, 48, 7978.
- [37] T.X. Viegas et al., Bioconjugate Chemistry, 2011, 22, 976.
- [38] O. Sedlacek et al., Biomaterials, 2017, 146, 1.
- [39] R. Luxenhofer et al., Biomaterials, 2010, 31, 4972.
- [40] P. Persigehl, R. Jordan, O. Nuyken, Macromolecules, 2000, 33, 6977.
- [41] J.F.R. van Guyse, X. Xu, R. Hoogenboom, Journal of Polymer Science, Part A: Polymer Chemistry, 2019, 57, 2616.
- [42] B.D. Monnery, R. Hoogenboom, Polymer Chemistry, 2019, 10, 3480.
- [43] S.L. Lin, M. R. Fuh, Journal of Chromatography A, 2010, 1217, 3467.
- [44] E. Polo et al., Bioorganic Chemistry, 2019, 90, 103034.
- [45] D. Elkhalifa, I. Al-Hashimi, A.E. al Moustafa, A. Khalil, Journal of Drug Targeting, 2021, 29, 403.
- [46] E. Szliszka, Z.P. Czuba, B. Mazur, A. Paradysz, W. Krol, Molecules, 2010, 15, 5336.
- [47] A. Modzelewska, C. Pettit, G. Achanta, N.E. Davidson, P. Huang, S.R. Khan, Bioorganic and Medicinal Chemistry, 2006, 14, 3491.
- [48] T.L.C. Oldoni et al., Separation and Purification Technology, 2011, 77, 208.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d6da2a-57e4-46d8-98ba-5437962c0caa