PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time - frequency method and artificial neural network classifier for induction motor drive system defects classification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, by introducing two statistical parameters, energy and L-kurtosis, a new fault diagnostic system combining Wavelet Packet Decomposition and Multilayer Perceptron Neural Network is designed to improve efficiency and precision of induction motor defects diagnosis. This method is applied to vibratory signals of asynchronous motor running at two different rotational speeds (1500 rpm and 2000 rpm) at a sampling frequency of 8 KHz to detect three main types of defects: bearing faults, load imbalance and misalignment. These speeds are considered as the usual medium running speeds of induction motor. According to the results, the high performance and accuracy of this new faults diagnostic system is proved and confirmed, thus it can be used in the detection of other machines defects.
Czasopismo
Rocznik
Strony
art. no. 2024110
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • LSEM, Laboratoire des Systèmes Electromécaniques, Badji Mokhtar University, 23000 Annaba, B.O 12, Algeria
  • LSEM, Laboratoire des Systèmes Electromécaniques, Badji Mokhtar University, 23000 Annaba, B.O 12, Algeria
autor
  • LSEM, Laboratoire des Systèmes Electromécaniques, Badji Mokhtar University, 23000 Annaba, B.O 12, Algeria
Bibliografia
  • 1. Siddiqui K, Sahay K, Giri V, Scholar P. Health monitoring and fault diagnosis in induction motor-a review. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2014; 3: 6549-65.
  • 2. Zhang X, Wan S, He Y, Wang X, Dou L. Bearing fault diagnosis based on iterative 1.5-dimensional spectral Kurtosis. IEEE Access 2020; 8: 174233-174243. https://doi.org/10.1109/ACCESS.2020.3024697.
  • 3. Feng H, Liang W, Zhang L. State monitoring and early fault diagnosis of rolling bearing based on wavelet energy entropy and LS-SVM. Journal of Computers 2013; https://doi.org/10.4304/jcp.8.8.2150-2155.
  • 4. Kumar P, Hati AS. Dilated convolutional neural network based model for bearing faults and broken rotor bar detection in squirrel cage induction motors. Expert Systems with Applications 2022; 191: 116290. https://doi.org/10.1016/j.eswa.2021.116290.
  • 5. He F, Ye Q. A bearing fault diagnosis method based on wavelet packet transform and convolutional neural network optimized by simulated annealing algorithm. Sensors 2022;22(4):1410. https://doi.org/10.3390/s22041410.
  • 6. Zhang X, Li J, Wu W, Dong F, Wan S. Multi-fault classification and diagnosis of rolling bearing based on improved convolution neural network. entropy 2023; 25(5): 737. https://doi.org/10.3390/e25050737.
  • 7. Belkacemi B, Salah S, Ghemari Z, Khazzane A. Detection of induction motor improper bearing lubrication by discrete wavelet transforms (DWT) decomposition. Instrumentation Mesure Metrologie 2020; 19: 347-54. https://doi.org/10.18280/i2m.190504.
  • 8. Lin JL, Liu JYC, Li CW, Tsai LF, Chung HY. Motor shaft misalignment detection using multiscale entropy with wavelet denoising. Expert Systems with Applications 2010; 37(10): 7200-4. https://doi.org/10.1016/j.eswa.2010.04.009.
  • 9. Zhao W, Hua C, Wang D, Dong D. Fault diagnosis of shaft misalignment and crack in rotor system based on MI-CNN. Proceedings of the 13th International Conference on Damage Assessment of Structures. Lecture Notes in Mechanical Engineering. Springer Singapore 2020: 529-540. https://doi.org/10.1007/978-981-13-8331-1_39.
  • 10. Lee Y, Kim BK, Bae JH, Kim K. Misalignment detection of a rotating machine shaft using a support vector machine learning algorithm. International Journal of Precision Engineering and Manufacturing 2021; 22. https://doi.org/10.1007/s12541-020-00462-1.
  • 11. Lahouasnia N, Rachedi MR, Djalel D, Salah S. Load Unbalance Detection Improvement in Three-Phase Induction Machine Based on Current Space Vector Analysis. Journal of Electrical Engineering & Technology 2020; 15. https://doi.org/10.1007/s42835- 020-00403-y.
  • 12. Liu H, Mi X, Li Y. Comparison of two new intelligent wind speed forecasting approaches based on Wavelet Packet Decomposition, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Artificial Neural Networks. Energy Conversion and Management 2018;155:188-200. https://doi.org/10.1016/j.enconman.2017.10.085.
  • 13. Cherif H, Benakcha A, Laib I, Chehaidia SE, Menacer A, Soudan B, i in. Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy 2020; 212: 118684. https://doi.org/10.1016/j.energy.2020.118684.
  • 14. Gao Q, Xiang J. A Method Using EEMD and LKurtosis to detect faults in roller bearings. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). IEEE 2018 :71-76. https://doi.org/10.1109/PHM-Chongqing.2018.00018.
  • 15. Liu H, Xiang J. A strategy using variational mode decomposition, L-Kurtosis and minimum entropy deconvolution to detect mechanical faults. IEEE Access 2019; 7: 70564-70573. https://doi.org/10.1109/ACCESS.2019.2920064.
  • 16. Bao W, Tu X, Hu Y, Li F. Envelope spectrum LKurtosis and its application for fault detection of rolling element bearings. IEEE Transactions on Instrumentation and Measurement 2020; 69(5): 1993-2002. https://doi.org/10.1109/TIM.2019.2917982.
  • 17. Duan Z, Wu T, Guo S, Shao T, Malekian R, Li Z. Development and trend of condition monitoring and fault diagnosis of multi-sensors information fusion for rolling bearings: a review. The International Journal of Advanced Manufacturing Technology 2018; 96. https://doi.org/10.1007/s00170-017-1474-8.
  • 18. Malla C, Panigrahi I. Review of condition monitoring of rolling element bearing using vibration analysis and other techniques. Journal of Vibration Engineering & Technologies 2019;7(4):407-14. https://doi.org/10.1007/s42417-019-00119-y.
  • 19. Obaid R, Habetler TG. Effect of load on detecting mechanical faults in small induction motors. 2003 s. 307-11. https://doi.org/10.1109/DEMPED.2003.1234591.
  • 20. Xu M, Marangoni RD. Vibration analysis of a motorflexible coupling-rotor system subject to misalignment and unbalance, Part I: Theoretical Model And Analysis. Journal of Sound and Vibration 1994; 176(5): 663-79. https://doi.org/10.1006/jsvi.1994.1405.
  • 21. Gangsar P, Tiwari R. Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review. Mechanical Systems and Signal Processing 2020; 144: 106908. https://doi.org/10.1016/j.ymssp.2020.106908.
  • 22. Nandi S, Toliyat HA, Li X. Condition monitoring and fault diagnosis of electrical motors-A review. IEEE Transactions on Energy Conversion 2005; 20(4): 719-29. https://doi.org/10.1109/TEC.2005.847955.
  • 23. Qin SR, Zhong YM. Research on the unified mathematical model for FT, STFT and WT and its applications. Mechanical Systems and Signal Processing 2004;18(6):1335-47. https://doi.org/10.1016/j.ymssp.2003.12.002.
  • 24. Castejón C, Lara O, García-Prada JC. Automated diagnosis of rolling bearings using MRA and neural networks. Mechanical Systems and Signal Processing 2010; 24(1): 289-99. https://doi.org/10.1016/j.ymssp.2009.06.004.
  • 25. Bae H, Kim YT, Lee SH, Kim S, Lee MH. Fault diagnostic of induction motors for equipment reliability and health maintenance based upon Fourier and wavelet analysis. Artificial Life and Robotics 2005; 9(3): 112-6. https://doi.org/10.1007/s10015- 004-0331-7.
  • 26. Bahoura M, Simard Y. Blue whale calls classification using short-time Fourier and wavelet packet transforms and artificial neural network. Digital Signal Processing 2010; 20(4): 1256-63. https://doi.org/10.1016/j.dsp.2009.10.024.
  • 27. Gan M, Wang C, Zhu C. Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mechanical Systems and Signal Processing 2016; 72-73: 92-104. https://doi.org/10.1016/j.ymssp.2015.11.014.
  • 28. Liu H, Shi Z. A fault detection approach using variational mode decomposition, L-kurtosis and random decrement technique for rotating machinery. International Journal of Mechanical Engineering and Applications 2020;8(1):16. https://doi.org/10.11648/j.ijmea.20200801.13.
  • 29. Pang B, Tang G, Tian T. Rolling bearing fault diagnosis based on SVDP-Based Kurtogram and iterative autocorrelation of teager energy operator. IEEE Access 2019; 7: 77222-77237. https://doi.org/10.1109/ACCESS.2019.2921778.
  • 30. Liu S, Hou S, He K, Yang W. L-Kurtosis and its application for fault detection of rolling element bearings. Measurement 2018; 116: 523-32. https://doi.org/10.1016/j.measurement.2017.11.049.
  • 31. Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications 2011; 38(10): 13475-81. https://doi.org/10.1016/j.eswa.2011.04.149.
  • 32. Qiao W, Khishe M, Ravakhah S. Underwater targets classification using local wavelet acoustic pattern and Multi-Layer Perceptron neural network optimized by modified Whale Optimization Algorithm. Ocean 2021;219:108415. https://doi.org/10.1016/j.oceaneng.2020.108415.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d5dca2-d11a-471e-aba9-c5e20a87ad0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.