PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing Body Machining Including Variable Casting Allowances

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work contains the results of research conducted to optimize the machining of milling table castings. The possibility of reducing the total volume of machining allowances, reducing the wear of cutting tools, shortening machining time and eliminating idle machining passes was considered. The tests were carried out on two batches of castings supplied by two independent foundries. Casting geometry measurements were made using a structured light scanner. The analysis included machining with cemented carbide tools and tool ceramics at two machining centers: DMC200U and DMC270U. It has been shown that as a result of eliminating idle machining passes, it is possible to reduce machining time by 12% for the first and by 44% for the second casting supplier. The estimated annual savings for the production volume of 500 pcs of these castings can range from € 7388 to even € 23 346. The actual cost of cheaper casts was also calculated, taking into account the difference in machining cost resulting from larger machining allowances.
Twórcy
  • Poznan University of Technology, Institute of Mechanical Technology, ul. Piotrowo 3, 61-138 Poznan, Poland, phone: (+48 61) 665 27 85
Bibliografia
  • Bazrov B.M. and Sorokin A.I. (1982), The Effect of Clamping Sequence on Workpiece Mounting Accuracy, Soviet Engineering Research, 2, 10, 539–543.
  • Berry M. (2000), A Machining and Cutting Fluid Decision Tool for Cost, Quality and Environmental Tradeoffs, Master’s thesis, University of Illinois at Urbana-Champaign.
  • Chatelain J.F. (2005), A Level-based Optimization Algorithm for Complex Part Localization, Precision Engineering, 29, 2, 197–207, doi: 10.1016/j.precisioneng.2004.07.002.
  • Chatelain J.F. and Fortin C. (2001), A Balancing Technique for Optimal Blank Part Machining, Precis. Eng., 25, 13–23, doi: 10.1016/S0141-6359(00)00050-7.
  • Cuypers W., Van Gestel N., Voet A., et al. (2009), Optical Measurement Techniques for Mobile and Largescale Dimensional Metrology, Opt. Lasers Eng., 47, 292–300, doi: 10.1016/j.optlaseng.2008.03.013.
  • Dai Y., Chen S., and Kang N. (2010), Error Calculation for Corrective Machining with Allowance Requirements, Int. J. Adv. Manuf. Technol., 49, 635–641, doi: 10.1007/s00170-009-2437-5.
  • DIN ISO 8062-3 Geometrische Produktspezifikationen (GPS) – Maß-, Form, und Lagertoleranzen und Bearbeitungszugaben für Gussstücke.
  • Gessner A. and Adam W. (2016), Zautomatyzowane ustalanie korpusów obrabiarkowych, Mechanik, 8-9, 1068–1069.
  • Gessner A. (2016), An approach for machining allowance optimization of castings in machine tool industry with the use of optical scanner, Metalurgija, 55, 3, 573.
  • Gessner A., Staniek R., and Bartkowiak T. (2014a), Computer-aided Alignment of Castings and Machining Optimization, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, doi: 10.1177/0954406214536380.
  • Gessner A., Staniek R., and Bartkowiak T. (2014b), Determination of Minimal Machining Allowances in Iron Castings, Advances in Manufacturing Science and Technology, 38, 3, 21–32, doi: 10.2478/AMST2014-0015.
  • Gessner A. and Staniek R. (2014), Optimization of Machining Surplus Distribution Relative to Hardness of the Machined Surface, Proceedings of ASME ESDA Conference, Copenhagen, doi: 10.1115/ESDA2014-20370.
  • Hamrol A., Gawlik J. and Sładek J. (2019), Mechanical engineering in Industry 4.0, Management and Production Engineering Review, 10, 3, 14–28, doi: 10.24425/mper.2019.129595.
  • Koikea Y., Matsubaraa A., and Yamaji I. (2013), Optimization of Cutting Path for Minimizing Workpiece Displacement at the Cutting Point: Changing the Material Removal Process, Feed Direction, and Tool Orientation, Procedia CIRP 5, 31–36, doi: 10.1016/j.procir.2013.01.006.
  • Kowalski M. and Zawadzki P. (2019), Decomposition of knowledge for automatic programming of CNC machines, Management and Production Engineering Review, 10, 1, 98–104, doi: 10.24425/mper.2019.128248.
  • Li X., Li W., Jiang H., and Zhao H. (2013), Automatic evaluation of machining allowance of precision castings based on plane features from 3D point cloud. Computers in Industry, 64, 1129–1137. doi: 10.1016/j.compind.2013.06.003.
  • Mendikute A. and Zatarain M. (2012), A Machine Vision Approach for Automated Raw Part Alignment in Machine Tools, Mod. Mach. Sci. J., 1, 365–369, doi: 10.17973/MMSJ.2012_11_201221.
  • Nicolaou O., Thurston D.L., and Carnahan J.V. (2002), Machining Quality and Cost: Estimation and Tradeoffs, J. Manuf. Sci. Eng., 124, 840–851, doi: 10.1115/1.1511169.
  • Pekarcikova M., Trebuna P., Kliment M. and Trojan J. (2019), Demand driven material requirements planning. Some methodical and practical comments, Management and Production Engineering Review, 10, 2, 50–59, doi: 10.24425/mper.2019.129568.
  • Rewers P., Bożek M. and Kulus W. (2019), Increasing the efficiency of the production process by production levelling, Management and Production Engineering Review, 10, 2, 93–100. doi: 10.24425/mper.2019. 129572.
  • Sanghavi D., Parikh S. and Raj S.A. (2019), Industry 4.0: tools and implementation, Management and Production Engineering Review, 10, 3, 3–13, doi: 10.24425/mper.2019.129593.
  • Schreiner T. (1999), Cost Estimation for Tradeoff Decisions in Design for Manufacturing, PhD Thesis, University of Illinois at Urbana-Champaign.
  • Sika R., Szajewski D., Hajkowski J., and Popielarski P. (2019), Application of instance-based learning for cast iron casting defects prediction, Management and Production Engineering Review, 10, 4, 101–107, doi: 10.24425/mper.2019.131450.
  • Sun Y., Xu J., Guo D., and Jia Z. (2009), A unified localization approach for machining allowance optimization of complex curved surfaces. Precision Engineering, 33, 516–523, doi: 10.1016/j.precisioneng.2009.02.003.
  • Wu X. and Dai W. (2016), Research on machining allowance distribution optimization based on processing defect risk. Procedia CIRP, 56, 508–511, doi: 10.1016/j.procir.2016.10.099.
  • Zhang Y., Dinghua Z., and Wu B. (2015), An approach for machining allowance optimization of complex parts with integrated structure. Journal of Computational Design and Engineering, 2, 248–252, doi: 10.1016/j.jcde.2015.06.007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d4fad9-eca1-46cc-8d6d-2326b971b948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.