PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of diffusion on the reaction of sulfuric acid with ilmenites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
The reaction of ilmenite raw materials with sulfuric acid has been investigated to find out the influence of diffusion processes on the course of this reaction. Three different laboratory methods were used to initiate the reaction: mixing ilmenite with 83–85% sulfuric acid at a temperature of 80 ◦C, mixing ilmenite with 90% sulfuric acid at temperatures of 20–40 ◦C and adding water, and mixing ilmenite with water and adding 95% sulfuric acid. Changes of thermal power during the process (thermokinetics) were studied with the use of calorimetry. It was found that diffusion processes play an important role when the reaction is initiated by mixing ilmenite with water followed by the addition of sulfuric acid and are less important when the reaction is initiated by mixing ilmenite with concentrated sulfuric acid followed by the addition of water. To explain the influence of diffusion processes on the reaction, the model calculations based on mass and heat balance equations were involved. Model calculations showed that the diffusion and mass transport processes are so fast that the reaction kinetics is mainly influenced by the reaction on the surface of ilmenite particles. The adopted model of calculations showed a very good agreement with experimental results.
Rocznik
Strony
art. no. e23
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Blakey R.R., Hall J.E., 1988. Titanium dioxide, In: Lewis P.A. (Ed.), Pigment handbook. 2nd edition, John Wiley & Sons Inc., New York.
  • 2. Ding J., Yu L., Wang J., Xu Q., Ye S., 2019. A symmetric dual-channel accelerating rate calorimeter with the varying thermal inertia consideration. Thermochim. Acta, 678, 178304. DOI: 10.1016/j.tca.2019.178304.
  • 3. Duh Y.S., Hsu C.C., Kao C.S., Yu S.W., 1996. Applications of reaction calorimetry in reaction kinetics and thermal hazard evaluation. Thermochim. Acta, 285, 67–79. DOI: 10.1016/0040-6031(96)02899-7.
  • 4. Gázquez M.J., Bolívar J.P., García-Tenorio R., Vaca F., 2009. Physicochemical characterization of raw materials and coproducts from the titanium dioxide industry. J. Hazard. Mater., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.
  • 5. Hany C., Lebrun H., Pradere C., Toutain J., Batsale J.-Ch., 2010. Thermal analysis of chemical reaction with a continuous microfluidic calorimeter. Chem. Eng. J., 160, 814–822. DOI: 10.1016/j.cej.2010.02.048.
  • 6. Jabłoński M, 2010. Investigation of thermal power of reaction of titanium slag with sulphuric acid. Cent. Eur. J. Chem. 8, 149–154. DOI: 10.2478/s11532-009-0127-7.
  • 7. Jabłoński M., 2008. Investigation of reaction products of sul- phuric acid with ilmenite. J. Therm. Anal. Calorim., 93, 717–720. DOI: 10.1007/s10973-008-9134-8.
  • 8. Jabłoński M., 2009. Influence of particle size distribution on thermokinetics of ilmenite with sulphuric acid reaction. J. Therm. Anal. Calorim., 96, 971–977. DOI: 10.1007/s10973-009-0048-x.
  • 9. Jabłoński M., Lawniczak-Jabłońska K., Klepka M.T., 2012. Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulphuric acid. J. Therm. Anal. Calorim., 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.
  • 10. Jabłoński M., Lubkowski K., Tylutka S., Ściążko A., 2021a. Heat effects in the reaction of sulfuric acid with ilmenites influenced by initial temperature and acid concentration. Pol. J. Chem. Technol., 23, 37–42. DOI: 10.2478/pjct-2021-0028.
  • 11. Jabłoński M., Lubkowski K., Tylutka S., Ściążko A., 2021b. The influence of sulphur addition on the hazard-type reaction of ilmenite ores with sulfuric acid. Pol. J. Chem. Technol., 23, 17–23. DOI: 10.2478/pjct-2021-0025.
  • 12. Jabłoński M., Przepiera A., 2001. Kinetic model for the reaction of ilmenite with sulphuric acid. J. Therm. Anal. Calorim., 65, 583–590. DOI: 10.1023/A:1012405826498.
  • 13. Jabłoński M., Tylutka S., 2016. The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Therm. Anal. Calorim., 124, 355–361. DOI: 10.1007/s10973-015-5114-y.
  • 14. Johnson R.W., Rudy S.W., Unwin S.D., 2003. Essential practices for managing chemical reactivity hazards. American Institute of Chemical Engineers, New York, New York. DOI: 10.1002/9780470925300.
  • 15. Leung J.C., Fauske H.K., Fisher H.G., 1986. Thermal runaway reactions in a low thermal inertia apparatus. Thermochim. Acta, 104, 13–29. DOI: 10.1016/0040-6031(86)85180-2.
  • 16. Liang B., Li C., Zhang C., Zhang Y., 2005. Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 76, 173– 179. DOI: 10.1016/j.hydromet.2004.10.006.
  • 17. Lin C.P., Li J.S., Tseng J.M., Mannan M.S., 2016. Thermal runaway reaction for highly exothermic material in safe storage temperature. J. Loss Prev. Process Ind., 40, 259–265. DOI: 10.1016/j.jlp.2016.01.006.
  • 18. Mantero J., Gazquez M.J., Bolivar J.P., García-Tenorio R., Vaca F., 2013. Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radioact., 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.
  • 19. Moreno V.C., Kanes R., Wilday J., Véchot L., 2015. Modeling of the venting of an untempered system under runaway conditions. J. Loss Prev. Process Ind., 36, 171–182. DOI: 10.1016/j.jlp.2015.04.016.
  • 20. Ortín J., Torra V., Tachoire H., 1987. Thermal power measurements in a differential-heat-conduction-scanning calorimeter at low temperature-scanning rates. Thermochim. Acta, 121, 333–342. DOI: 10.1016/0040-6031(87)80183-1.
  • 21. Parapari P.S., Irannajad M., Mehdilo A., 2016. Modification of ilmenite surface properties by superficial dissolution method. Miner. Eng., 92, 160–167. DOI: 10.1016/j.mineng. 2016.03.016.
  • 22. Perry R.H., Chilton C.H., 1973. Chemical Engineers’ Handbook. Fifth Edition, McGraw-Hill, New York.
  • 23. Przepiera A., Jabłoński M., Wiśniewski M., 1993. Study of kinetics of reaction of titanium raw materials with sulphuric acid. J. Therm. Anal., 40, 1341–1345. DOI: 10.1007/BF02546898.
  • 24. SNS Insider, 2022. Titanium dioxide market size & share analysis report. (Report Code: SNS/C&M/1734), June 2022. Available at: https://www.snsinsider.com/reports/titanium-dioxide-market-1734.
  • 25. The Chemours Company, 2022. The Chemours Company 2021 annual report (Form 10-K). February 17, 2022.
  • 26. Urben P.G. (Ed.), 2006. Bretherick’s handbook of reactive chemical hazards. 7th edition, Academic Press, Amsterdam.
  • 27. Winkler J., 2003. Titanium dioxide. Vincentz Network, Hannover, 2003.
  • 28. Zheng Y., Zhang C., Liu H., 2020. The determination of isobaric heat capacities of liquidy the new flow calorimeter. Thermochim. Acta, 690, 178644. DOI: 10.1016/j.tca.2020.178644
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d4be9a-7a17-46e0-902c-37081e55421b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.