PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model of multiple-layer pavement structure-subsoil system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Progress made in recent years has brought about a high demand for increasingly modern structural and technological solutions. Each structure should in turn be designed and built to show sufficient durability for the intended period of use. The requirement of durability is met if, throughout its intended lifetime, the structure fulfils its roles regarding load-bearing capacity, serviceability limits and stability without excessive, unexpected costs. Due to the above, a need arises to predict the response of an engineering structure to given loads throughout its life. Thus it becomes increasingly common to employ numerical analyses using the finite elements method (FEM), both on the design stage and later, for the purposes of evaluating the state of a specific structure. However, a numerical calculation model may be constructed in different ways. This paper presents the impact of geometry of the model, the choice of a discretization mesh and the choice of a continuous 3D or 2D model corresponding to pavement-subgrade system calculation model. 3-dimensional modelling was carried out in this paper as full modelling of actual engineering problems in 3-dimensional space, and in the form of simplified modelling using axial symmetry. In the model, a traditional multi-layer pavement structure was considered. Criterion values obtained in numerical analyses were compared to values obtained with the use of VEROAD software.
Rocznik
Strony
751--762
Opis fizyczny
Bibliogr. 74 poz., rys., tab., wykr.
Twórcy
autor
  • Building Research Institute, 1 Filtrowa St., 00-611 Warsaw, Poland
Bibliografia
  • [1] A. Siemińska-Lewandowska, “The methods of metro tunnel construction in grounds and rocks”, Geoingineering: Roads, Bridges, Tunnels 3, 76–84 (2015), [in Polish].
  • [2] Ł. Kaczmarek and P. Popielski, “Numerical analysis of the impact of construction of an underground metro line on the urban environment: a case study from the Vistula Valley in Warsaw”, Geological Overview 64 (4), 219–229 (2016).
  • [3] P. Bętkowski, S. Pradelok, and M. Łupieżowiec, “Maintenance and risk assessment of a concrete frame bridge impacted by mining deformations of the area”, Proc. 14th International Multidisciplinary Scientific GeoConference SGEM 2014 3, 345–352 (2014).
  • [4] S. Pradelok, M. Łupieżowiec, P. Bętkowski, and A. Rudzik, “Insitu testing of vibration propagation while driving the prefabricated piles”, Proc. 14th International Multidisciplinary Scientific GeoConference SGEM 2014 2, 503–510 (2014).
  • [5] S. Ponikiewski and J. Bzówka, “Slope stability analysis of reclaimed landfill”, Engineering and Construction 69 (3), 161–162 (2013), [in Polish].
  • [6] M. Łupieżowiec, S. Pradelok, P. Bętkowski, and G. Poprawa, “FEM model of vibration propagation in the soil caused by prefabricated driven piles”. Proc. 14th International Multidisciplinary Scientific GeoConference SGEM 2014 2, 363–368 (2014), [in Polish].
  • [7] A.D. Mwanza, M. Muya, and H. Peiwan, “Towards modeling rutting for asphalt pavement in hot climates”, in Asphalt Pavements, vol. 2, pp. 1547–1555, ed. R.Y. Kim, CRC Press Taylor&Francis Group, London, 2014.
  • [8] F.T.S. Aragão and Y.R. Kim, “Modeling the effects of contituent properties on the mechanical behavior of asphalt mixtures”, in Asphalt Pavements, vol. 2, pp. 1365–1374, ed. R.Y. Kim, CRC Press Taylor & Francis Group, London, 2014.
  • [9] L. Fedorowicz and M. Kadela, “Model calibration of line construction-subsoil assisted by experimental research”, AGH Journal of Mining and Geoengineering 36 (1), 155–164 (2012).
  • [10] L. Fedorowicz and M. Kadela, “Problems of adequate interpretation of the results for analyses of the structure-subsoil systems”, AGH Journal of Mining And Geoengineering 35 (2), 209–216 (2011), [in Polish].
  • [11] A. Szydło, Concrete Road Pavements. Theory. Dimensioning. Construction, Polski Cement, Kraków, 2004, [in Polish].
  • [12] D.L. de Jong, M.G.F. Peutz, and A.R. Korswagen, “Computer program BISAR: layered systems under normal and tangential loads”, Koninklijke Shell Laboratorium Report AMSR.0006.73, (1973).
  • [13] R. Nagórski and M. Nagórska, “Verification of finite element models in static analysis of flexible road structures”, in Collective works of Warsaw University of Technology. Civil Engineering, vol. 158, pp. 3–53, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, 2014, [in Polish].
  • [14] A. Szydło, “Evaluation of pavement’s bearing capacity in the light of the new catalogue”, in Technological progress in road engineering. Theory and practice, pp. 21–27, ed. J. Kukiełka, Norbertinum, Lublin, 1998, [in Polish].
  • [15] D.H. Chen, M. Zaman, J. Laguros, and A. Soltani, “Assessment of computer programs for analysis of flexible pavement structure”, Transportation Research Record 1482, 123–133 (1995).
  • [16] L.A. Al-Khateeb Saound and M.F. Al-Msouti, “Rutting prediction of flexible pavemenets using finite element modeling”, Jordan Journal of Civil Engineering 5 (2), 173–190 (2011).
  • [17] A.B. Goktepe, E. Agar, and A.H. Lav, “Advances in backcalculating the mechanical properties of flexible pavements”, Advances in Engineering Software 37, 421–431 (2006), doi:10.1016/j.advengsoft.2005.10.001.
  • [18] M. Kadela and L. Fedorowicz, “Calculation model of layered pavement structure-subgrade system according to EC7”, ACTA Scientiarum Polonorum ARCHITECTURA 12 (3), 17–25 (2013), [in Polish].
  • [19] H. Faheem and A. M. Hassan, “2D PLAXIS finite element modeling of asphalt-concrete pavement reinforced with geogrid”, Journal of Engineering Sciences Assiut University Faculty of Engineering 42 (6), 1336–1348 (2014).
  • [20] M. Gwóźdź-Lasoń, “Consolidation of soil with weak layers reinforced by gravel columns and geosynthetic”, Proc. 2nd Problem-solving Conference ‘Interaction of structures with subgrade’ 1, 231–240 (2004), [in Polish].
  • [21] J. Sękowski, Basics of Dimensioning Soil Improvement Pads, Silesian University of Technology Research Papers, Civil Engineering series, vol. 94, Wydawnictwo Politechniki Śląskiej, Gliwice, 2002, [in Polish].
  • [22] J. Fedorowicz and L. Fedorowicz, “Roads. Numerical evaluation of safety of linear structures in mining deformations risk areas”, Roads. Infrastructure construction 4 (6), 37–41 (2012), [in Polish].
  • [23] G. Lacey, G. Thenoux, and F. Rodriguez-Roa, “Three-dimensional finite element model for flexible pavement analyses based on field modulus measurements”, The Arabian Journal for Science and Engineering 33 (1B), 65–76 (2008).
  • [24] S.A. Perez, J.M. Balay, P. Tamagny, and Ch. Petit, “Accelerated pavement testing and modeling of reflective cracking in pavements”, Engineering Failure Analysis 14, 1526–1537 (2007), doi:10.1016/j.engfailanal.2006.12.010.
  • [25] M. Ameri, A. Mansourian, M.H. Khavas, M.R.M. Aliha, and M.R. Ayatollahi, “Cracked asphalt pavement under traffic loading – A 3D finite element analysis”, Engineering Fracture Mechanics 78, 1817–1826 (2011), doi:10.1016/j.engfracmech.2010.12.013.
  • [26] C. Chazallon, G. Koval, P. Hornych, F. Allou, and S. Mouhoubi, “Modelling of rutting of two flexible pavements with the shakedown theory and the finite element method”, Computers and Geotechnics 36, 798–809 (2009), doi:10.1016/j.Compgeo.2009.01.007.
  • [27] M. Kadela and M. Kozłowski, “Foamed concrete layer as sub-structure of industrial concrete floor”, Proc. of WMCAUS 2016. Proc. Eng. 161C, 468–476 (2016), doi:10.1016/j.proeng.2016.08.663.
  • [28] R. Wardęga, “Influence of traffic structure on road structure bearing capacity”, Ph.D Thesis, Wrocław University of Science and Technology, Wrocław, 2006, [in Polish].
  • [29] R. Nagórski, Mechanics of Road Pavement in Outline, PWN, Warsaw, 2014, [in Polish].
  • [30] G. Leonardi, “Finite element analysis for airfield asphalt pavements rutting prediction”, Bull. Pol. Ac.: Tech. 63 (2), 397–403 (2015), doi:10.1515/bpasts-2015‒0045.
  • [31] W. Feng, “Mechanistic-empirical study of effects of truck tire pressure on asphalt pavement performance”, Ph.D Thesis, The University of Texas, Austin, 2005.
  • [32] P. Kanty, K. Sternik, and S. Kwiecień, “Numerical analysis of consolidation of embankment subsoil reinforced with dynamic replacement stone columns”, Technical Transactions Environmental Engineering 2-Ś (24), 79–100 (2015).
  • [33] M. Kowalska, “Compactness of scrap tyre rubber aggregates in standard proctor test”, Proc. of WMCAUS 2016. Proc. Eng. 161C, 975–979 (2016), doi:10.1016/j.proeng.2016.08.836.
  • [34] Catalogue of Standard Flexible and Semi-flexible Pavement Structures, ed. J. Judycki, GDDKiA, Gdańsk University of Technology, Gdańsk, 2012, [in Polish].
  • [35] D. Godlewski, Road Pavements, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, 2011, [in Polish].
  • [36] PN-87/S/02201, “Roads. Road pavements. Classification, names, terms”, 1987, [in Polish].
  • [37] “Guidelines for subgrade improvement in road engineering”, Road and Bridge Research Institute, Warsaw, 2002, [in Polish].
  • [38] Catalogue of Standard Flexible Road Structures, Issue II, Studies and Materials, Vol. 21, Road and Bridge Research Institute, Warsaw, 1983, [in Polish].
  • [39] Catalogue of Reinforcement and Renovation of Flexible and Semi-Rigid Pavement 2012, ed. D. Sybilski, General Directorate of Public Roads, Road and Bridge Research Institute, Warsaw, 2012, [in Polish].
  • [40] Guide technique: Realisation des rembilais et des couches de forme. Fascicule I – Principes generaux, 2nd ed., Service d’Etudes des Techniques des Routes et Autoroutes, 2000, [in French].
  • [41] B. Picoux, A. El. Ayadi, and C. Petit, “Dynamic response of flexible pavement submitted by impulsive loading”, Soil Dynamics and Earthquake Engineering 29, 845–854 (2009), doi:10.1016/j.soildyn.2008.09.001.
  • [42] S. Firlej, “Subgrade according catalogue of reinforcement and renovation of flexible and semi-rigid pavement 1997”, Road Engineering 7, (1998).
  • [43] M. Kadela, “The criteria for modeling and analysis of layered structures-subsoil system”, Ph.D Thesis, Silesian University of Technology, Gliwice, 2012, [in Polish].
  • [44] L. Fedorowicz, Building Structure-Subsoil Contact Task. Part I. Criteria for Modeling Process and Analyses Carried out for the Basic Contact Tasks Building Structure-Subsoil, Wydawnictwo Politechniki Śląskiej, Gliwice, 2006 [in Polish].
  • [45] M. Kim, “Three-dimentional finite element analysis of flexible pavements considering nonlinear pavement foundation behavior”, Ph.D Thesis, University of Illinois, Urbana, 2007.
  • [46] S. Im, H. Ban, and Y.R. Kim, “Rutting and cracking modeling of asphalt pavements considering nonlinear viscoalasticity and cohesive zone fracture”, in Asphalt Pavements, vol. I, pp. 775–783, ed. R.Y. Kim, CRC Press Taylor & Francis Group, London, 2014.
  • [47] A. Ayadi, B. Picoux, G. Lefeuve-Mesgouez, A. Mesgouez, and C. Petit, “An improved dynamic model for the study of flexible pavement”, Advances in Engineering Software 44, 44–53 (2012), doi:10.1016/j.advengsoft.2011.05.038.
  • [48] Y.R. Kim, Modelling of Asphalt Concrete, ASCE Press-McGrow-Hill, New York, 2009.
  • [49] Q. Xu and G.K. Chang, “Experimental and numerical study of asphalt material geospatial heterogeneity with intelligent compaction technology on roads”, Construction and Building Materials 72, 189–198 (2014), doi:10.1016/j.conbuildmat.2014.09.003.
  • [50] Y.K. Seo and C.C. Swan, “Load-factor stability analysis of embankments on saturated soil deposits”, Journal of Geotechnical and Geoenvironmental Engineering 127 (5), 436–445 (2001).
  • [51] L. Zheng, Y. Hai-lin, W. Wan-ping, and C. Ping, “Dynamic stress and deformation of layered road structure under vehicle traffic loads: Experimental measurements and numerical calculations”, Soil Dynamics and Earthquake Engineering 39l, 100–112 (2012). doi:10.1016/j.soildyn.2012.03.002.
  • [52] Ch. Xu, Y. Anzhi, M. Liao, and T. Chunan, “Analysis of periodic in surface layer of pavement structures”, Engineering Failure Analysis 18, 411–420 (2011), doi:10.1016/j.engfailanal.2010.09.023.
  • [53] C.M. Kuo and F.J. Chou, “Development of 3-D finite element model for flexible pavements”, Journal of the Chinese Institute of Engineers 27 (5), 707–717 (2004).
  • [54] T. Nishiyama, M.A. Bhatti, and H.D. Lee, “Development of 3-D finite element model to quantify bond level of thin concrete overlay”, TRB 2003 Annual Meeting, (2003), CD-ROM.
  • [55] Y.H. Cho and H.M. Koo, “A behavior analysis of concreto overlay based on the characteristics of asphalt pavements”, 82nd Transportation Research Board Meeting, (2003), CD-ROM.
  • [56] Interim Advice Note IAN 73/06 Rev. 1, “Design guidance for road pavement foundations”, (2009).
  • [57] J. Gaszyński and M. Gwóźdź-Lasoń, “Numerical models of the reinforced soil”, Proc. 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology In Harmony With The Global Environment 1–5, 799–802 (2005).
  • [58] M. Gryczmański and R. Uliniarz, “A simple critical state model with small strain nonlinearity for overconsolidated soils”, Foundations of Civil and Environmental Engineering 12, 49–60 (2008).
  • [59] P.V. Lade, “Overview of constitutive models for soils”, in Proceedings Soil Constitutive Models: Evaluation, Selection and Calibration Geotechnical Special Publications, No. 128, pp. 1–34, eds. J.A. Yamamuro and V. N. Kaliakin, ASCE, 2005.
  • [60] B. Stypułkowski, Material Issues in Road Design and Construction, Wydawnictwo Komunikacji i Łączności, Warsaw, 1981, [in Polish].
  • [61] A. Szydło, “Elastic characteristics of subgrade in static analysis of a road”, Ph.D Thesis, Wrocław University of Science and Technology, Wrocław, 1977, [in Polish].
  • [62] B. Krawczyk, “Identification of parameters of road pavement models based on dynamic impulse tests”, Ph.D Thesis, Wrocław University of Science and Technology, Wrocław, 2013 [in Polish].
  • [63] M. Kadela, “Response of subsoil on cyclic load transferred by pavement”, in Proceedings Pavement Materials, Structures, and Performance Geotechnical Special Publications, No. 239, pp. 424–433, eds. B. Huang and S. Zhao, ASCE, 2014, doi:10.1061/9780784413418.042.
  • [64] M.A. Elseifi, I.L. Al-Qadi, and P.J. Yoo, “Viscoelastic modeling and field validation of flexible pavements”, J. Engineering Mechanics 132, 172 (2006).
  • [65] M.N.S. Hadi and B. Bodhinayake, “Non-linear finite element analysis of flexible pavements”, Advances in Engineering Software 34, 657–662 (2003).
  • [66] L. Fedorowicz, J. Fedorowicz, and M. Kadela, “Evaluation of road’s pavement resistance of traffic-load KR4 of category in application of the elastic-plastic model with degradation”, International Conference 70 Years of FCE STU, 10 (2008), CD-ROM.
  • [67] M. Kadela, A. Cińcio, and M. Kozłowski, “Degradation analysis of notched foam concrete beam”, Applied Mechanics and Materials 797, 96–100 (2015), doi:10.4028/www.scientific.net/AMM.797.96.
  • [68] M. Kozłowski, M. Kadela, and A. Kukiełka, “Fracture energy of foamed concrete based on three-point bending test on notched beams”, Proc. 7th Scientific-Technical Conference on Material Problems in Civil Engineering MATBUD’2015. Proc. Eng. 108, 349–354 (2015), doi:10.1016/j.proeng.2015.06.157
  • [69] H.J. Lee and Y.R. Kim, “Visci-elastic constitutive model for asphalt concrete under cyclic loading”, Journal of Engineering Mechanics 1 (1), 32–40 (1998).
  • [70] J.E.S. Lutif, Y. Kim, F.V. Souza, and D.H. Allen, “Multiscale modeling of asphant media considering heterogeneity, viscoelasticity, and nonlinear fracture damage”, in Asphalt Pavements, vol. I, pp. 943–952, ed. R.Y. Kim, CRC Press Taylor & Francis Group, London, 2014.
  • [71] M. Iwański and A. Chomicz-Kowalska, “Evaluation of the pavement performance”, Bull. Pol. Ac.: Tech. 63 (1), 97–105 (2015), doi:10.1515/bpasts-2015‒0011.
  • [72] M. Kadela, “Problems in building a credible model for a system road construction-subsoil”, in Selected Topics in the Field of Construction, pp. 433–442, ed. A. Wawrzynek, Wydawnictwo Politechniki Śląskiej, Gliwice, 2009, [in Polish].
  • [73] M. Bartoszek, L. Fedorowicz, and M. Kadela, “Numerical modeling of layered structures with aid of laboratory and in situ tests”, Engineering Modelling Journal 12 (43), 15–26 (2012), [in Polish].
  • [74] P. Aliawdin and J. Połczyński, “Analysis of heat transfer in road pavement structures using methods of optimization”, Proc. 9th International Conference “Modern Building Materials, Structures and Techniques” 3, 873–880 (2007).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d16f70-9fa5-4c56-88cc-ef54b2839a63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.