PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mesomechanical model for concrete creep with viscoelastic interface transition zone

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The interface transition zone (ITZ) effect on concrete creep performance was analyzed in this study. The ITZ was treated as a weakened matrix, which mechanical behavior could be described by the Burgers model. The proposed prediction model of concrete creep took account of the ITZ's viscoelasticity by combining the generalized self-consistent Mori–Tanaka method with the Laplace transformation principle. The model's experimental validation confirmed that it accurately simulated the creep behavior of concrete specimens with various fly ash and ground slag ratios. The existence of viscoelastic ITZ promotes the creep of concrete, and the maximum creep growth rate was attained in the concrete specimen with 60% ratio of fly ash. The effects of ITZ thickness and other parameters, the volume fraction of aggregates, and particularly ITZ contribution to concrete creep in the concrete specimens with five mix proportions at different loading ages were clarified and discussed in detail.
Rocznik
Strony
art. no. e65, 1--15
Opis fizyczny
Bibliogr. 50 poz., il.
Twórcy
autor
  • State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
autor
  • State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
autor
  • State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, China
Bibliografia
  • 1. Seneviratne C, Gunasekara C, Law DW, Setunge S, Robert D. Creep, shrinkage and permeation characteristics of geopolymer aggregate concrete: long-term performance. Arch Civ Mech Eng. 2020;20:140.
  • 2. Ratha B, Deo S, Ramtekkar G. Modification of ACI209R-92 concrete shrinkage model for partial replacement of cement with fly ash and sand with pond ash. Adv Civil Eng Mater. 2020;9:602-620.
  • 3. Bazant ZP, Baweja S. Justification and refinement of model B3 for concrete creep and shrinkage. Mater Struct. 1995;28:488-495.
  • 4. Gardnern NJ, Lockman MJ. Design provisions for drying shrinkage and creep of normal-strength concrete. ACI Mater J. 2001;98:159-167.
  • 5. Goel R, Kumar R, Paul DK. Comparative study of various creep and shrinkage prediction models for concrete. J Mater Civ Eng. 2007;19:249-260.
  • 6. Jirásek M, Havlásek P. Microprestress-solidification theory of concrete creep: Reformulation and improvement. Cem Concr Res. 2014;60:51-62.
  • 7. Serra C, Batista AL, Monteiro AN. Dam and wet-screened concrete creep in compression: in situ experimental results and creep strains prediction using model B3 and composite models. Mater Struct. 2016;49:4831-51.
  • 8. Wendner R, Hubler MH, Banant ZP. Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multi-decade bridge databases. Mater Struct. 2015;48:771-796.
  • 9. Byard BE, Schindler AK, Riding KA, Folliard KJ. Validation of modified B3 model to predict early-age stress development of concrete. ACI Mater J. 2016;113:691-700.
  • 10. Zeng QX, Han DJ. A simplified concrete creep and shrinkage CEB-FIP90 model in long-span bridge design. Appl Mech Mater. 2014;638-640:1059–62.
  • 11. Neville AM, Dilger WH, Brooks JJ. Creep of plain and structural concrete. Construction Pr 1983.
  • 12. Zheng JJ, Zhou XZ, Jin XY. An n-layered spherical inclusion model for predicting the elastic moduli of concrete with inhomogeneous ITZ. Cem Concr Compos. 2012;34(5):716-723.
  • 13. Chen J, Xu LM, Li H. Investigation on a direct modeling strategy for the effective elastic moduli prediction of composite material. Mater Sci Eng A. 2008;491:385-9.
  • 14. Göbel L, Bos C, Schwaiger R, Flohr A, Osburg A. Micromechanics-based investigation of the elastic properties of polymer-modified cementitious materials using nanoindentation and semi-analytical modeling. Cem Concr Compos. 2018;88:100–14.
  • 15. Hu CL, Li ZJ. Property investigation of individual phases in cementitious composites containing silica fume and fly ash. Cem Concr Compos. 2015;57:17-26.
  • 16. Nežerka V, Bílý P, Hrbek V, Fládr J. Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete. Cem Concr Compos. 2019;103:252-262.
  • 17. Jasiuk I, Dundurs J, Jiang MX. On the reduced parameter dependence of the Mori-Tanaka theory. Mater Sci Eng A. 2000;285:130-135.
  • 18. Li YQ, Metcalf JB. Two-step approach to prediction of asphalt concrete modulus from two-phase micromechanical models. J Mater Civ Eng. 2005;17:407-415.
  • 19. Jin L, Du XL, Ma GW. Macroscopic effective moduli and tensile strength of saturated concrete. Cem Concr Res. 2012;42:1590-600.
  • 20. Ardakani A, Yazdani M. The relation between particle density and static elastic moduli of lightweight expanded clay aggregates. Appl Clay Sci. 2014;93-94:28-34.
  • 21. Chen S, Lu J. Mesoscopic numerical simulation of the mechanical properties of concrete creep. J Vibroeng. 2013;15:1634-1641.
  • 22. Kim YR, Little DN. Linear viscoelastic analysis of asphalt mastics. J Mater Civ Eng. 2004;16:122-132.
  • 23. Dai QL, You ZP. Micromechanical finite element framework for predicting viscoelastic properties of asphalt mixtures. Mater Struct. 2008;41:1025-1037.
  • 24. Aili A, Vandamme M, Torrenti JM, Masson B. A viscoelastic poromechanical model for shrinkage and creep of concrete. Cem Concr Res. 2020;129:105970.
  • 25. Farran J. Contribution of microstructure of minerals and their bonding with Portland cement paste. Rev Mater Construct Travel Publics. 1956;490:490–1.??
  • 26. Qian P, Xu QJ. Experimental investigation on properties of interface between concrete layers. Constr Build Mater. 2018;174:120-9.
  • 27. Asbridge AH, Page CL, Page MM. Effects of metakaolin, water/binder ratio and interfacial transition zones on the microhardness of cement mortars. Cem Concr Res. 2002;32:1365-9.
  • 28. Jebli M, Jamin F, Malachanne E, Garcia-Diaz E, El Youssoufi MS. Experimental characterization of mechanical properties of the cement-aggregate interface in concrete. Constr Build Mater. 2017;161:16-25.
  • 29. Sevostianov I, Kachanov M. Effect of interphase layers on the overall elastic and conductive properties of matrix composites applications to nanosize inclusion. Int J Solids Struct. 2007;44:1304-15.
  • 30. Li GQ, Zhao Y, Pang SS, Li YQ. Effective Young’s modulus estimation of concrete. Cem Concr Res. 1999;29:1455-62.
  • 31. Li GQ, Zhao Y, Pang SS. Four-phase sphere modeling of effective bulk modulus of concrete. Cem Concr Res. 1999;29:839-845.
  • 32. Lee KM, Park JH. A numerical model for elastic modulus of concrete considering interfacial transition zone. Cem Concr Res. 2008;38:396-402.
  • 33. Duan HL, Yi X, Huang ZP, Wang J. A unified scheme for prediction of effective moduli of multiphase composites with interface effects Part I: Theoretical framework. Mech Mater. 2007;39:81-93.
  • 34. Papanicolaou GC, Xepapadaki AG, Drakopoulo ED, Papaefthymiou KP, Portan DV. Interphasial viscoelastic behavior of CNT reinforced nanocomposites studied by means of the concept of the hybrid viscoelastic interphase: Part II - Application and scaling laws. J Appl Polym Sci. 2012;124:1578-88.
  • 35. Zhu XY, Wang XF, Yu Y. Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface. Int J Eng Sci. 2014;76:34-46.
  • 36. Zhao QX, Liu XC, Jiang JY. Effect of curing temperature on creep behavior of fly ash concrete. Constr Build Mater. 2015;96:326-333.
  • 37. GB∕T 50082-2009. Standard for test methods of long-term performance and durability of ordinary concrete. Beijing: Standards Press of China, 2009.
  • 38. Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. New York: Springer-Verlag; 2002. p. 23-176.
  • 39. Chen HS, Sun W, Stroeven P. Quantitative solution of volume fraction of interface in cementitious composites. Acta Materiae Compositae Sinica. 2006;23:133-142.
  • 40. Dai LH, Huang ZP, Wang R. A Generalized self-consistent Mori-Tanaka model for predicting the effective moduli of coated inclusion based composites. Acta Mech Solida Sin. 1999;20:187-194.
  • 41. Hill R. Interfacial operators in the mechanics of composite media. J Mech Phys Solids. 1983;31:347-357.
  • 42. Mclaughlin R. A study of the differential scheme for composite materials. Int J Eng Sci. 1977;15:237-244.
  • 43. Gao YM, Dong MS, Li LL, Wang LN, Sun ZB. Interface effects on the creep characteristics of asphalt concrete. Constr Build Mater. 2015;96:591-8.
  • 44. Cwirzen A, Penttala V. Aggregate-cement paste transition zone properties affecting the salt-frost damage of high-performance concretes. Cem Concr Res. 2005;35:671-9.
  • 45. Yu JC, Zhao QX. Effect of steel fiber on creep behavior of concrete. J Chinese Ceram Soc. 2013;41:1087-93.
  • 46. Zhao QX, Sun W, Zheng KR, Chen HS, Qin HG, Liu JZ. Influnce of fly ash proportion on creep characteristics of high-performance concrete and its mechanism. J Chinese Ceram Soc. 2006;34:446-451.
  • 47. Zheng KR, Sun W, Lin W, Zhao QX. Effects of blast furnace slag on micro-mechanical properties of interface transition zone. J Nanjing University Aeronyt Astronaut. 2008;40:407-411.
  • 48. Wang XY, Zheng QF, Dong SF, Ashour A, Han BG. Interfacial characteristics of nano-engineered concrete composites. Constr Build Mater. 2020;259:119803.
  • 49. Keinde D, Kamali-Bernard S, Bernard F, Cisse I. Effect of the interfacial transition zone and the nature of the matrix-aggregate interface on the overall elastic and inelastic behaviour of concrete under compression: a 3D numerical study. Eur J Environ Civ Eng. 2014;18:1167-1176.
  • 50. Akcay B, Agar-Ozbek AS, Bayramov F, Atahan HN, Sengul C, Tasdemir MA. Interpretation of aggregate volume fraction effects on fracture behavior of concrete. Constr Build Mater. 2012;28:437-443.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79d100fa-c417-4534-8887-47afcc9e4274
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.