PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gearbox faults feature selection and severity classification using machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The most widely used technique for gearbox fault diagnosis is still vibration analysis. The need for gearbox condition monitoring in an automated process is essential and there is still a problem with the selection of features that best describe a fault or its severity level. For this purpose, multiple-domain vibration signals statistic features are extracted through time and frequency domain by postprocessing of raw time signal, time-synchronous average signal, frequency spectra and cepstrum. Five different datasets are considered with different levels of fault analyzing gear chipped and a missing tooth, gear root crack, and gear tooth wear under stable running speed and load. A preliminary experimental study of a single stage test bench gearbox was performed in order to test feature sensitivity to type and level of fault in the process of clustering and classification. Selected features were finally processed using an artificial neural network classifier.
Słowa kluczowe
Rocznik
Strony
748--756
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
  • E.ON UK, Westwood Way, Westwood Business Park, Coventry CV4 8LG, United Kingdom
Bibliografia
  • 1. Antoni J, Borghesani P. A statistical methodology for the design of condition indicators. Mechanical Systems and Signal Processing 2019; 114: 290-237, https://doi.org/10.1016/j.ymssp.2018.05.012.
  • 2. Baillie D, Mathew J. A comparison of autoregressive modeling techniques for fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing 1996; 10: 1-17, https://doi.org/10.1006/mssp.1996.0001.
  • 3. Bajrić R. Contribution to the identification of gear pairs damage by using mechanical vibration signal analysis techniques. PhD Thesis, Faculty of Technical Sciences -University of Novi Sad 2016
  • 4. Chen Y, Liang X, Zuo MJ. Sparse time series modeling of the baseline vibration from a gearbox under time-varying speed condition. Mechanical Systems and Signal Processing 2019; 134: 106342, https://doi.org/10.1016/j.ymssp.2019.106342.
  • 5. Dhamande LS, Chaudhari MB. Compound gear-bearing fault feature extraction using statistical features based on time-frequency method.Measurement 2018; 125: 63-77, https://doi.org/10.1016/j.measurement.2018.04.059.
  • 6. Gan M, Wang C, Zhu C. Multiple-domain manifold for feature extraction in machinery fault diagnosis Measurement 2015; 75: 76-91, https://doi.org/10.1016/j.measurement.2015.07.042.
  • 7. He Q, Yan R, Fanrang K, Du R. Machine condition monitoring using principal component representations. Mechanical Systems and Signal Processing 2009; 23(2): 446-466, https://doi.org/10.1016/j.ymssp.2008.03.010.
  • 8. Ibrahim G, Albarbar A, Abouhnik A, Shnibha R. Adaptive filtering based system for extracting gearbox condition feature from the measured vibrations. Measurement 2013; 46 (6): 2029-2034, https://doi.org/10.1016/j.measurement.2013.02.019.
  • 9. Jardine AK, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing 2006; 20(7): 1483-1510, https://doi.org/10.1016/j.ymssp.2005.09.012.
  • 10. Jia F, Lei Y, Lin J, Zhou X, Lu N. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mechanical Systems and Signal Processing 2016, 72: 303-315, https://doi.org/10.1016/j.ymssp.2015.10.025.
  • 11. Karabacak YE, Gursel Özmen N, Gumusel L. Worm gear condition monitoring and fault detection from thermal images via deep learning method. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (3): 544-556, https://doi.org/10.17531/ein.2020.3.18.
  • 12. Kohonen T. Self-Organizing Maps. Berlin: Springer, 1995, https://doi.org/10.1007/978-3-642-97610-0.
  • 13. Lazarz B, Wojnar G, Czech P. Early fault detection of toothed gear in exploitation conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2011; 1(49): 68-77
  • 14. Li X, Li J, He D, Qu Y. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21 (3): 403-410, https://doi.org/10.17531/ein.2019.3.6.
  • 15. Li Y, Wang K. Modified convolutional neural network with global average pooling for intelligent fault diagnosis of industrial gearbox. Eksploatacja i niezawodnosc - Maintenance and Reliability 2020; 22 (1): 63-72, https://doi.org/10.17531/ein.2020.1.8.
  • 16. Liu S, Hou S, He K, Yang W. L-kurtosis and its application for fault detection of rolling element bearings, Measurement 2018, 116: 523-532, https://doi.org/10.1016/j.measurement.2017.11.049.
  • 17. Loutas TH, Roulias D, Pauly E, Kostopoulos V. The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery. Mechanical Systems and Signal Processing 2011; 25 (4): 1339-1352, https://doi.org/10.1016/j.ymssp.2010.11.007.
  • 18. Lu D, Qiao W, Gong X. Current-based gear fault detection for wind turbine gearboxes, IEEE Transactions on Sustainable Energy 2017, 8 (4): 1453-1462, https://doi.org/10.1109/TSTE.2017.2690835.
  • 19. Malhi A, Gao R X. PCA-based feature selection scheme for machine defect classification. IEEE Transactions on Instrumentation and Measurement 2004, 53 (6): 1517 - 1525, https://doi.org/10.1109/TIM.2004.834070.
  • 20. Omar FK, Gaouda A. Dynamic wavelet-based tool for gearbox diagnosis. Mechanical Systems and Signal Processing 2012; 26(1): 190-204, https://doi.org/10.1016/j.ymssp.2011.06.021.
  • 21. Rafiee J, Rafiee M, Tse P. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Systems with Applications 2010, 37: 4568-4579, https://doi.org/10.1016/j.eswa.2009.12.051.
  • 22. Schweizer K, Cattin PC, Brunner R, Müller B, Huber C, Romkes J. Automatic selection of a representative trial from multiple measurements using Principle Component Analysis, Journal of biomechanics 2012; 45: 2306-2309, https://doi.org/10.1016/j.jbiomech.2012.06.012.
  • 23. Stetco A, Dinmohammadi F, Zhao X, Robu V, Flynn D, Barnes Keane MJ, Nenadic G. Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy 2019; 133: 620-635, https://doi.org/10.1016/j.renene.2018.10.047.
  • 24. Wang D. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited. Mechanical Systems and Signal Processing 2016; 70-71: 201-208, https://doi.org/10.1016/j.ymssp.2015.10.007.
  • 25. Wang L, Shao Y. Fault feature extraction of rotating machinery using a reweighted complete ensemble empirical mode decomposition with adaptive noise and demodulation analysis. Mechanical Systems and Signal Processing 2020; 138: 106545, https://doi.org/10.1016/j.ymssp.2019.106545.
  • 26. Wang W.Q., Ismail F., Golnaraghi M. Assessment of gear damage monitoring techniques using vibration measurements. Mechanical Systems and Signal Processing 2001; 15 (5): 905-922, https://doi.org/10.1006/mssp.2001.1392.
  • 27. YanPing Z, ShuHong H, JingHong H, Tao S, Wei L. Continuous wavelet grey moment approach for vibration analysis of rotating machinery, Mechanical Systems and Signal Processing 2006; 20(5): 1202-1220, https://doi.org/10.1016/j.ymssp.2005.04.009.
  • 28. Widodo A, Yang BS, Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Applications 2007; 32(2): 299-312, https://doi.org/10.1016/j.eswa.2005.11.031.
  • 29. Ziaran S, Darula R. Determination of the state of wear of high contact ratio gear sets by means of spectrum and cepstrum analysis. Journal of Vibration and Acoustics 2013; 135(2): 021008, https://doi.org/10.1115/1.4023208.
  • 30. Zhang X, Zhao J. Compound fault detection in gearbox based on time synchronous resample and adaptive variational mode decomposition. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22 (1): 161-169, https://doi.org/10.17531/ein.2020.1.19.
  • 31. ISO 21771: 2007 Gears - Cylindrical involute gears and gear pairs - Concepts and geometry
  • 32. SOM Toolbox for Matlab, laboratory for information and computer science, University of Helsinki, http://www.cis.hut.fi/projects/somtoolbox
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79cd7fa9-f322-4de9-89b2-66d1fee04dd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.