PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrodynamic state of art review: rotor – stator marine propulsor systems design

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper covers the important topic of rotor–stator propulsor system design and operation. For the stand-alone marine screw propeller, both the design criteria for loading distribution and the theoretical efficiency limits are well described in the basic literature. This is in contrast to the combined propulsor system like a propeller cooperating with a pre-swirl device. The paper describes the current state of the art, summarising results obtained by various researchers by installing energy-saving devices on particular vessels. The design methods utilised are briefly outlined, with the main characteristics underlined. Rough analysis of the gathered data confirms the expected trend that a higher efficiency gain due to ESD installation is possible for a higher propeller loading.
Rocznik
Tom
Strony
72--82
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Ship Design and Research Centre Szczecińska 65, 80-392 Gdańsk Poland
Bibliografia
  • 1. I. H. Abbott, A. E. Doenhoff, Theory of wing sections including a summary of airfoil data. New York: Dover Publications, 1959.
  • 2. F. Celik, M. Guner, “Energy saving device of stator for marine propellers,” Ocean Engineering, vol. 34, pp. 850–855, 2007
  • 3. J.P. Chen, J. Su, J.W. Jie, L.Yang, “Investigation on propulsion and flow field of ships with energy saving devices using CFD predictions and model tests,” in 12th International Conference on Hydrodynamics, Egmond aan Zee, The Netherlands, September 2016.
  • 4. M. Cheng, C. Hao-peng, Q. Zheng-fang, C. Ke, “The design of propeller and propeller boss cap fins (PBCF) by an integrative method,” Journal of Hydrodynamics, vol. 26 (4), pp. 586–593, 2014.
  • 5. B. W. Coney, A method for the design of a class of optimum marine propulsors. Massachusetts Institute of Technology, 1989.
  • 6. L. Guangnian, Q. Chen, Y. Liu, “Experimental study of dynamic structure of propeller tip vortex,” Polish Maritime Research, vol. 27 (2), pp. 11–18, 2020.
  • 7. P. M. Hooijmans, J. Holtrop, J. Windt, “Refitting to save fuel and new approaches in the design of new buildings,” in 11th International Symposium on Practical Design of Ships and Other Floating Structures, 2010.
  • 8. L. X. Hou, C. H. Wang, A. K. Hu, F. L. Han, “Wake-adapted design of fixed guide vane type energy saving device for marine propeller,” Ocean Engineering, vol. 110(B), pp 11–17, 2015
  • 9. S. Hyun-Joon, L. Jong-Seung, L. Jang-Hoon, MyungRyun Han, H. Eui-Beom, S. Sung-Chul, “Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC,” International Journal of Naval Architecture and Ocean Engineering, vol. 5(3), pp 414–430, 2013
  • 10. L. Joon-Hyoung, K. Moon-Chan, S. Young-Jin, K. Jin-Gu, “Study on performance of combined energy saving devices for container ship by experiments”, Fifth International Symposium on Marine Propulsors smp’17, 2017.
  • 11. J. E. Kerwin, W. B. Coney, C.-Y. Hsin, “Hydrodynamic aspects of propeller/stator design,” The Society of Naval Architects and Marine Engineers, Propeller ’88 Symposium 5th, 1988.
  • 12. J.-H. Kim, J.-E. Choi, B.-J. Choi, S.-H. Chung, “Twisted rudder for reducing fuel-oil consumption,” Ocean Engeering, vol. 6, pp. 715–722, 2014.
  • 13. J.-H. Kim, J.-E. Choi, B.-J. Choi, S-H. Chung, H.-W. Seo, “Development of energy-saving devices for a full slowspeed ship through improving propulsion performance,” International Journal of Naval Architecture and Ocean Engineering, vol. 7, pp. 390–398, 2015.
  • 14. M. C. Kim, H. H. Chun, Y. D. Kang, “Design and experimental study on a new concept of preswirl stator as an efficient energy-saving device for slow speed full body ship,” SNAME vol 112, pp 111–121, 2004.
  • 15. V. Kraslinikov, K. Koushan, M. Nataletti, L. Sileo, S. Spence, “Design and numerical and experimental investigation of pre-swirl stators PSS,” in Sixth International Symposium on Marine Propulsors SMP’19, 2019.
  • 16. P. Król, “Vortex model of ideal guide vane and its application to the real guide vane,” in Sixth International Symposium on Marine Propulsors SMP’19, 2019.
  • 17. P. Król, “A new design method of propulsor systems with optimum distribution of bound circulation,” Gdańsk University of Technology, 2019.
  • 18. P. Król, T. Bugalski, “Application of vortex flow model in propeller-stator system design and analysis,” Polish Maritime Research, vol. 25(1), pp. 24–32, 2018.
  • 19. P. Król, T. Bugalski, M. Wawrzusiszyn, “Development of numerical methods for marine propeller-pre-swirl stator system design and analysis,” in Fifth International Symposium on Marine Propulsors smp’17, 2017.
  • 20. P. Król, K. Tesch, “Pre-swirl energy saving device in marine application,” in XXIII Krajowa Konferencja Mechaniki Płynów, Zawiercie, 2018.
  • 21. L. Kwi-Joo, A. Jung-Sun, K. Han-Joung, “Comparative study between results of theoretical calculation and model test for performance confirmation of ‘Crown Duct’,” Journal of Ocean Engineering and Technology, vol. 28(1), pp. 1–5, 2014.
  • 22. S.-S. Lim, T.-W. Kim, D.-M. Lee, C.-G. Kang, S.-Y. Kim, “Parametric study of propeller boss cap fins for container ships,” International Journal of Naval Architecture and Ocean Engineering, vol. 6(2), pp. 187–205, 2014; published online Epub6.
  • 23. A. Minchev, M. Schmidt, S. Schnack, “Contemporary bulk carrier design to meet IMO EEDI requirements,” Third International Symposium on Marine Propulsors smp’13, 2013.
  • 24. K. Moon-Chan, S. Yong-Jin, L. Won-Joon, L. Joon-Hyoung, “Study on extrapolation method for self-propulsion test with pre-swirl device,” Fifth International Symposium on Marine Propulsors smp’17, 2017.
  • 25. A. Nadery, H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without WED,” Polish Maritime Research, vol. 27(4), pp. 50–59, 2020.
  • 26. H. Nouroozi, H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,” Polish Maritime Research, vol. 27(1), pp. 6–17, 2020.
  • 27. J. R. Nielsen, W. Jin, “Pre-swirl fins adapted to different operation conditions,” Sixth International Symposium on Marine Propulsors SMP’19, 2019.
  • 28. S. Park, G. Oh, S. Rhee, B.-Y. Koo, H. Lee, “Full scale wake prediction of an energy saving device by using computational fluid dynamics,” Ocean Engineering, vol. 101, pp. 254–263, 2015.
  • 29. C. D. Simonsen, C. Nielsen, C. Klimt-Møllenbach, C. R. Holm, A. Minchev, “CFD based investigation of potential power saving for different rudder types, positions and preswirl fins,” Siemens report, November 2012.
  • 30. T. T. Ngoc, D. D. Luu, T. T. H. Nguyen, T. T. T. Nguyen, M. V. Nguyen, “Numerical prediction of propeller – hull interaction characteristics using RANS method,” Polish Maritime Research, vol. 26(2), pp. 163–172, 2019.
  • 31. Y. Xing-Kaeding, S. Gatchell, H. Streckwall, “Towards practical design optimization of pre-swirl device and its life cycle assessment,” in Fourth International Symposium on Marine Propulsors SMP’15, 2015.
  • 32. S. Yong-Jin, K. Moon-Chan, L. Won-Joon, L. Kyoung-Wan, L. Joon-Hyoung,“Numerical and experimental investigation of performance of the asymmetric pre-swirl stator for container ship,” in Fourth International Symposium on Marine Propulsors SMP’15, 2015.
  • 33. J. Zou, G. Tan, H. Sun, J. Xu, Y. Hou, “Numerical simulation of the ducted propeller and application to a semi-submerged vehicle,” Polish Maritime Research, vol. 27(2), pp. 19–29, 2020.
  • 34. Y. Zhang, X. Wu, M. Lai, G. Zhou, J. Zhang, “Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions,” Polish Maritime Research, vol. 27(4), pp. 26–35, 2020.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79cc9cbb-8251-4c15-b28b-ecbba50b0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.