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Abstract 

In this paper a problem pertaining to the damped lateral vibrations of a beam with different boundary condi-
tions and with a rotational spring is formulated and solved. In the adopted model the vibration energy dissipa-
tion derives from the internal damping of the viscoelastic material (Kelvin–Voigt rheological model) of 
the beam and from the resistance motion in the supports. The rotational spring can be mounted at any chosen 
position along the beam length. The influence of step changes in the cross-section of the beam on its damped 
lateral vibrations is also investigated in the paper. The damped vibration frequency and the vibration amplitude 
decay level are calculated. Changes in the eigenvalues of the beam vibrations along with the changes in 
the damping ratio and the change in the model geometry observed on it are also presented. The considered 
beam was treated as Euler- Bernoulli beam. 
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1. Introduction 

The transverse vibration of prismatic and non-prismatic beams with additional discrete 
elements has been investigated in a number of studies. Study [1] presents the transverse 
vibration of a beam with a stepped cross-section together with the phenomenon of 
damped vibration in the body where the system is present. The problem of the vibration 
and dynamic stability of beams with different boundary conditions with additional dis-
crete elements was presented in study [2]. Study [3] concerned the modal analysis of 
a semi-infinite Euler-Bernoulli beam with discrete elements in the form of a rotational 
and a translational spring. Investigations concerning damped vibration were discussed in 
[4-7]. Study [4] discussed the effect of small internal and external damping on the stabil-
ity of non-conservative beam systems. The authors of study [5] demonstrated the effect 
of internal damping on the vibrations of a supported beam with a mass attached to 
the free end of the beam. Study [6] examined the vibration of an axially-loaded Timo-
shenko beam with local internal damping. The effect of constructional damping of the 
fixations on free vibration of the Bernoulli-Euler beam was presented in study [7].  

This study formulates and solves the problems of transverse damped vibration in a C-
P (clamped-pinned) beam with a stepped cross-section and with a rotational spring. Dis-
sipation of the vibration energy occurs as a result of the simultaneous internal damping 
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of the viscoelastic material of the beam and structural damping in the support. The con-
structional damping was modelled using a rotational viscous damper. The study analyses 
the simultaneous effect of the structural damping and internal damping, the spring rigidi-
ty and its location and the effect of the location of the stepped cross-section of the beam 
on the properties of the considered system. The results obtained in the study are present-
ed as 2D figures and spatial presentations. 

2. Mathematical model 

A scheme of the considered C-P beam is presented in Fig. 1. 

 
Figure 1. Model of the C-P beam with step changes in the cross-section 

with a rotational spring CS and rotational viscous damper CR 

Viscoelastic material was characterized by the Young's modulus En and the viscosity 
coefficient En* of the beam material. The coefficient of constructional damping in 
the rotational viscous damper was denoted as CR. 

The vibration equation for the two parts of a beam is known and has the following 
form: 

 

0
),(),(

),(),(

2

2

2

2

4

5
*

4

4

=
∂

∂
+

∂

∂
+

+
∂∂

∂
+

∂

∂

t

txW
A

x

txW
P

tx

txW
JE

x

txW
JE

n
nn

n
n

n
nn

n
nn

ρ

 (1) 

where:  
Wn(x,t) – the lateral displacement of beam,  
An – the cross-section area of the beam, 
Jn – the moment of inertia for the beam section, 
ρn – the density of the beam material, 
Pn – longitudinal forces in beam, 
n = 1,2 
x – space coordinate, 
t – time, 
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Solutions to equations (1) take the form: 
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where: ω* – the complex eigenvalue of the system, 1−=i  
Substitution of (2) into (1) leads to: 
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Boundary conditions: 
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The solution to equations (3) is expressed in the form of functions: 
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By substituting (6) into (5) a homogeneous system of equations was obtained with 
respect to unknown constants Dkn , and can be written in the matrix form as: 

 [ ]( ) 0* =DA ω  (8) 

where: 

 ( ) [ ]pqaA =*ω , ( )8..2,1, =qp , [ ] T
knDD = , 42,1 −=k    (9) 

The system has a nontrivial solution when the matrix determinant of coefficients is 
equal to zero with constants Dkn. 

 ( ) 0det * =ωA  (10) 

Finding the complex eigenvalues of matrix A(ω*) leads to the determination of 
damped vibration frequency Re(ω*) and the vibration amplitude decay level Im(ω*) of 
the considered system.  
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3. Numerical calculation results 

Computations were carried out assuming the following dimensionless quantities: 
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where: PC – the critical load of the tested beam with a constant cross-section. 
The results of the calculations are presented in Figs. 2 to 6. Investigations were car-

ried out for different ratios of the moments of inertia for the two parts of the beam 
(J=0.5, J=5) and for a beam with a constant cross-section (J=1). The system was loaded 
with longitudinal force P (p=0.05). The dependency of the eigenvalues (real parts Re(ω*) 
and imaginary parts Im(ω*)) on the coefficients of constructional damping µ, spring 
rigidity c and location of the change in the beam cross-section l was also determined.  

 

      

Figure 2. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 
beam eigenvalue on the coefficient l at η=0.002, µ=0.3, c=10 

 

      
Figure 3. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

beam eigenvalue on the spring rigidity coefficient c at η=0.002, µ=0.3 and l=0.2 
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Figures 5 and 6 present collective diagrams of the dependency of eigenvalues 
(Re(ω*) and Im(ω*)) in the studied system on the change in the rigidity of elastic support 
c and constructional damping µ. The calculations were carried out for selected values of 
internal damping and for a central location of the rotational spring and two values of 
the relation of the moments of inertia (J=5 and J=0.5). The results are presented as spa-
tial diagrams. 

 

      
Figure 4. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

beam on structural damping µ at η=0.002, c=10 and l=0.2 
 

      
Figure 5. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 

eigenvalue of the beam on the coefficient of structural damping µ and spring rigidity 
coefficient c for l=0.5 and J=0.5, η=0.002 

 

      
 

Figure 6. The dependency of real parts (Re(ω*)) and imaginary parts (Im(ω*)) of the first 
eigenvalue of the beam on the coefficient of structural damping µ and spring rigidity 

coefficient c for l=0.5 and J=5, η=0.002 
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4. Conclusions 

The damped frequencies of system Re(ω*) and the degree of amplitude decay Im(ω*) in 
the system depend on the location of the rotational spring along the beam. No uniform 
tendency for changes was observed in the case studied (Fig. 2). Improved spring rigidity 
causes a constant increase in the damped frequencies of the first eigenvalue of the sys-
tem (for selected values of coefficients η, µ and l). The degree of amplitude decay in this 
case depends on the ratio of rigidity J for the two beam parts. For the central location of 
the change in the cross-section (l=0.5), an increase in c causes a decrease in the coeffi-
cient of the amplitude decay for J=0.5, and an increase for J=5 (Fig. 5 and 6). The con-
structional damping of the fixation points with selected values of spring rigidity causes 
much more substantial changes in the eigenvalues of the system than in the reverse case 
(the change in coefficient c for selected value µ). The results presented in the study help 
determine the geometric parameters and values of the coefficients that characterize 
the damping and elasticity of the system for which the maximum degree of amplitude 
decay is maintained.  
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