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Abstract — Abstract: New approaches to the transformations of the uncontrollable and unobservable matrices of linear systems
to their canonical forms are proposed. It is shown that the uncontrollable pair (A,8) and unobservable pair (A,C) of linear systems
can be transform to their controllable (4, B) and observable (4, ) canonical forms by suitable choice of nonsingular matrix M
satisfyingtheconditonM[A B]=[A Bland[A B]M =[A B, respectively.Itisalsoshown thatbystitable choice
of the gain matrix K of the feedbacks of the derivative of the state vector it is possible to reduce the descriptor system to the

standard one.
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INTRODUCTION

The concepts of the controllability and observability
introduced by Kalman [8, 9] have been the basic notions of
the modern control theory. It well-known that if the linear
system is controllable then by the use of state feedbacks it is
possible to modify the dynamical properties of the closed-
loop systems [1, 2, 5-14]. If the linear system is observable
then it is possible to design an observer which reconstruct
the state vector of the system [1, 2, 5-14]. Descriptor
systems of integer and fractional order has been analyzed in
[6, 13]. The stabilization of positive descriptor fractional
linear systems with two different fractional order by
decentralized controller have been investigated in [13]. The
eigenvalues assignment in uncontrollable linear continuous-
time systems has been analyzed in [4].

In this paper new approaches to the transformations of
the uncontrollable and unobservable linear systems will be
proposed. In Section 2 some basic theorems concerning
matrix equations with non-square matrices and their
solutions are given. Transformations of the uncontrollable
pairs to their canonical forms are presented in Section 3 and
of the unobservable pairs in Section 4. Transformation of the
controllable pairs in one canonical forms to other one is
analyzed in Section 5. Elimination of the singularity in
descriptor linear systems is considered in Section 6.
Reduction of the descriptor linear systems to their standard
forms by the use of the feedbacks is analyzed in Section 7.
Concluding remarks are given in Section 8.

The following notation will be used: SR - the set of real

numbers, SR™™ -the set of Nx M real matrices, | N - the
N x N identity matrix.

l.  IMATRIX EQUATIONS WITH NON-SQUARE MATRICES AND
THEIR SOLUTIONS
Consider the matrix equation
PX =Q, (1)
PeR™, QeR™P are gven and
X e R™P is unknown matrix.

Theorem 1. The matrix equation (1) has a solution X if
and only if

where

rank[P Q] =rankP. (2)
Proof follows immediately from the Kronecker-Cappelly
Theorem [3].
Theorem 2. If the condition (2) is satisfied then the
solution X of the equation (1) is given by

X =PQ, (3)

where P. e SR™M is the right inverse of the matrix P

given by
P =PT[PP"]"+(l,-P'[PPT]'P)K,, K, eR™"
(4a)
or
P. =K,[PK,]*, K, e®R™ (4b)

the matrix Kl is arbitrary and K ) is chosen so that

det[AK,]#0.
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Proof. From (3) and (4a) we have
X =PT[PPT]'Q+(I n— PT[PPT]'P) K.Q (5)
Substituting (5) into (3) we obtain
PX =PPT[PP"]1'Q+(P-PPT[PP']'P)K,Q=Q
(6)
Proof of (4b) is similar. O
Consider the matrix equation

XP=Q, )
where P e R™", (j cRP" are given and
X € RP™ is unknown matrix.

Theorem 3. The matrix equation (7) has a solution X if
and only if

ranl{P} =rankP - (8
Q

Proof is similar (dual) to the proof of Theorem 1.
Theorem 4. If the condition (8) is satisfied then the
solution of the equation (7) is given by

X=QR, &)

where the left inverse of the matrix P is given by

B =[P"PI*P" +K,(I,—P[PTPIP"), K,e®R™

- arbitrary (10a)
or

P =[K,P]"'K,, K, eR™™ -arbitrary (10b)
and the matrix K 5 is chosen so that det[ K2 5] =0

Proof is similar (dual) to the proof of Theorem 2.

Il.  TRANSFORMATIONS OF THE UNCONTROLLABLE PAIRS TO

THEIR CANONICAL FORMS
Consider the continuous-time linear system
X = Ax+Bu, (11a)
y =Cx, (11b)
where  x=x(t)eR", u=u(t)eR",

y= y(t) < SR P are the state, input and output vectors

and AcR™, Be R™™,CeRP".

To simplify the notion we assume m = 1 (single input
systems).

Definition 1.The pair (A,B) is called in its canonical
controllable form if

0 1 0 .. 0
0
0 0 1 .. 0 .
A=l ... .. . . . | B=
0 0 0 0 1
-8 T T —a,
(12a)

or

0 0 .. 0 -a
1 0 .. 0 -& 0
A =01 0 -a, | B,= S}
0
0 0 1 -a,,
(12b)
Theorem 5.There exists a nonsingular matrix

M e R™" which transforms the uncontrollable pair (4,8)
satisfying the condition
rank[A B]=n (13)

to the canonical forms (12) if and only if
A B
rank{ } =rank[A B]fork=12. (14)
A B

Proof. From Theorem1 it follows that there exists a
nonsingular matrix M € SR"™" satisfying the equation
M[A B]=[A B,] fork=12 (15)
if and only if the condition (14) is satisfied. o
If the condition (14) is satisfied then for the given

matrices A,B and K , § the matrix M can be computed by
the use of the following procedure.

Procedure 1.

Step 1. Check the condition (14).The problem has a
solution if and only if the condition (14) is satisfied.

Step2.  Using the equalty MB =Bfind the
corresponding column of the matrix M.

Step3.  Using the equality MA=A find the
remaining columns of the matrix M.

The theorem will be illustrated by the following simple
example.

Example 1. Find the matrix M e R2? satisfying (15)
which transforms the pair

At 0] g0 (163)
-1 1 1

to their canonical form

3] s
1 —-a 0

Using Procedure 1 we obtain the following.

Step 1. The condition (14) is satisfied for the matrix A
with a =0

Step 2. From the equality

ool i)
0 m21 m22 1 m22

we obtain: m, :l, my, :O.

Step 3. Taking into account (17) and
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Aomac| M 1T1 0]_f0 1] 4
m, 0|-1 1| [1 0

we obtain: m,=m, =1.
Therefore, the desired nonsingular matrix M has the

form
M = 11 . (19)
10
Remark 1. The approach based on the equation
M[A B]=[A B] (20)

can be also used to transform the controllable pair (A,B)
to the desired standard controllable form (K, §) .

The procedure will be shown on the following simple
example.
Example 2. For the controllable pair

Azll,Bzo (21)
12 1

find the matrix M e 932 satisfying the equality (20)
such that the pair (A, B the desired canonical form

_ 01] - 1
A=MA= , B=MB=|_| (2
11 0

From the equality

wova-| e [Lfe) =
m,, m, (1 0

we have m,=1,m,,=0.
Using (22) we obtain

A~ MA— m, 11 1 _ 01 (24)
m,, O0J1 2 11
and Mu=—1 My =1
Therefore, the desired matrix M has the form

-1 1
M = . (25)
1 0
lll. TRANSFORMATIONS OF THE UNOBSERVABLE PAIRS TO
THEIR CANONICAL FORMS

To simplify the notation we assume p = 1(single output
systems).

Definition 2. The pair (A,C) is called in its canonical
observable form if

00 .. 0 -a
10 ..0 -a
A=l0 1 .. 0 -a | C=[0 0 1]
- anfl
(26a)

or
0 1 O 0
0 0 1 .. o0
A=l .. . o . . C=[L 0 .. q
0 0 0 0 1

- —& —& —,
(26b)
Theorem 6. There exists a nonsingular matrix

M e R™" which transforms the unobservable pair (A,C)

satisfying the condition
A
rank{ } =n (27)
C

to the canonical forms (26) if and only if

rank| & A | Zrank| | forke12. 28)
C C

k

Proof is similar (dual) to the proof of Theorem 5.

If the condition (28) is satisfied then for the given
matrices A, Cand A, B the matrix M can be computed by the
use of the following procedure.

Procedure 2.

Step 1. Check the condition (28). The problem has a
solution if and only if the condition (28) is satisfied.

Step 2. Using the equality C|\7| :é find the
corresponding column of the matrix l\?l .
Step3.  Using the equality AM = A find the

remaining columns of the matrix M .
The procedure will be illustrated by the following simple
example.

Example 3. Find the matrix l\?l e R¥2 satisfying (28)
which transforms the pair

1 0
A:{ } C=[1 0] (29)
11

to their canonical form

. {0
A=
1

Using Procedure 2 we obtain the following.
Step 1. The condition (28) is satisfied since
1 00 1 10

A A A
rank .|=rank|-1 1 1 -3|=rank|-1 1|=rank
c C C
1 00 1 1 0

17
3} ¢=[0 1- 6O

(31)
Step 2. From the equality

CM =[1 mrml’mﬂ:m 1 62

21 22

we obtain: m, = O, m, :1.
Step 3. Taking into account (29) and
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AM:100 1:01(33)
-1 1|m, m, 1 -3

we obtain: m,, =1, m,, =-2.

Therefore, the desired nonsingular matrix M has the

form
~ 0 1
M = . (34)
1 -2
IV. TRANSFORMATIONS OF THE CONTROLLABLE PAIRS TO
THEIR CANONICAL FORMS

Consider the following two pairs (K, B)and (A, é)
in canonical forms (26). We are looking for nonsingular
matrix M e R™" such that

M[A B]=[A B]. (35)
Theorem 7. The pair (K, E) can be transformed by
(35) into pair (A, é) if and only if

rankAf B =rank[A B]- (38
A B

Proof. By Theorem 1 the equation (35) has a solution M
if and only if the condition (36) is satisfied. o

Now we apply Theorem 7 to the pair (K, §) in their
canonical form (12) and we obtain the following theorem.

Theorem 8. The pair (12a) cannot be transformed into
pair (12b) by the nonsingular matrix M € R™" satisfying
(35).

Proof. Applying the condition (36) to the pairs (12) we
obtain

0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
rankp Ef}:rank % oCa g g~y 1 —n+1
A B 0 0 0 0 -a 1
0 0 0 -a o0
0 1 0 0 -a 0
Lo o o 1 -a, 0
(37)
and
0 1 0 0 0
0 0 .. 0 0 0
rank[A B]=rank| : oL o il=n
0 0 .. 0 1 0
-a, -a .. —a,, —-a, 1
(38)
Therefore, the pair (12a)cannot be transformed to the
pair(12b) by (35).

Example 3. Consider the controllable pairs in their
canonical forms

10

a-l 0 1| go|f (39)
2 -3 1

and ~
AZO_Z, B-|tl (40)
1 -3 0
In this case the condition (36) takes the form
[0 1 0
A B -2 -3 1
rank/:\ B = rank 3 =3 1
A B 0 -2 1
1 -30
and

1 0
-3 1
Therefore, does not exists the nonsingular matrix
M e R?>? which transforms the pair (39) into the pair
(40).
Similar results we obtain for the observable pairs (A,C).
Theorem 9. The pairs pair (K, cC ) can be transformed

by the matrix N € ™"

— 0
rank[ A B]:rank{ ) }:2- (42)

Aln=| A (43)
C_
to observable the pair (K, 6) if and only if
A Al A
rank| 2 2 = rank| 2 |- (44)
C C| C

Proof is similar(dual) to the proof of Theorem 8.

V. ELMINATION OF THE SINGULARITY IN DESCRIPTOR LINEAR
SYSTEMS

Consider the continuous-time linear system
Ex=Ax+Bu, (45)
where x = X(t) € R, U= u(t) e R™ are the
state, input and output vectors and E, A e R™"
BeRr™.
It is assumed that
det E =0 and det[Es — A] #0,5€C
(the field of complex numbers). (46)

We are looking for the matrix M e R™" satisfying
the equality
M[E A B]=[l, A B] (47
which eliminate the singularity of the system (45).

Note that by Theorem 1 there exists the nonsingular
matrix M satisfying (47) if and only if the condition

E A B
rank — “|=rank[E A B] (8
I. A B

n
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is satisfied. X = Ax+Bv, (58)
From (47) we have where

ME=1,. (49) A=F'A B=F'B. (59)

Note that for nonsingular matrix M the equation (49) has
no singular solution E.

Therefore we have the following conclusion. By suitable
choice of the matrix M it is not possible to transform the
descriptor system (45) to the standard one of the form

x=Ax+Bu, (50)
where x = x(t) € R", U= u(t) e R™  are the
state, input and output vectors and K e R™" ,
E c mnxm .
VI. REDUCTION OF THE DESCRIPTOR LINEAR SYSTEMS TO
STANDARD ONES BY FEEDBACKS

Consider the descriptor system(45) with feedbacks of
the derivative of the state vector shown in Fig.1.
v U - X
Ex = Ax+ Bu

K
dt

Fig.1. Descriptor system with feedback
Substituting the equality
u = v — Kx (v- the new input) (51)
into the equation

Ex= Ax+Bu (52)
we obtain
Ex =Ax + B(v — Kx) (53)
and
(E+BK)x=Ax+Bv. (54)

The feedback matrix K e 8™ is chosen so that the
matrix
|
F=E+BK=[E B] " (55)
K
is nonsingular.
Note that there exists the matrix K such that the matrix
Fis nonsingular if and only if
rank[E B]=n- (56)
Note that the equation (55) by Theorem 1 has the

solution I" if and only if
K

rank[E B F]=rank[E B] (57)
and this condition is satisfied if and only if (56) holds.
Therefore, the following theorem has been proved.
Theorem 10. There exists the matrix K such that the

matrix F is nonsingular if and only if the condition (56) is
satisfied.
For nonsingular matrix F from(54) we have

Example 4. Consider the system (52) with the matrices

e [0 1] af0 1T 5 [ e
00 -1 -2 1
which satisfies the condition (56) since

010
rank[E B]=rank =2 (61)
0 01

By Theorem 10 there exists the feedback matrix
K= [k1 kz] such that the matrix

remc 2 S0 w2 )]
00| |1 Kk, kK,

(62)

is nonsingular. In this case the matrix (62) is nonsingular

if k2 =0 and k1 is nonzero. For k1 =1, k2 =Qwe
have

K= o]and |0 1| (3
10

A_pia |0 10 1]_[-1 -2
o) [-1 -2] o 1] (&4

B=F'B= E) ﬂm ) m

VII. CONCLUSIONS

Two approaches to the transformations of the
uncontrollable and unobservable linear systems to their
canonical forms has been proposed (Theorems 5 and 6) and
procedures for calculation of transformation matrices have
been given (Procedures 1 and 2).The procedures have been
illustrated by simple numerical examples. It has been shown
that the pair (12a) Carnot been transformed to the pair (12b)
by the nonsingular matrix M satisfying (35) (Theorem 7).
Necessary and sufficient conditions have been established
for the reduction of the descriptor linear systems to their
standard forms(Theorem 8). The considerations can be
extended to the discrete-time linear systems and to the
fractional orders linear systems. An open problem is an
extension of these approaches to the different orders linear
systems.

11
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WYBRANE ZAGADNIENIA ANALIZY UKEADOW LINIOWYCH
Zaproponowano nowe podejsda do transformadii niesterowalnych i
nieobserwowalnych maderzy uldadéw liniowych do ich postad
lkanonicznych.  Wykazano, Ze niesterowalna para (AB) i
nieobserwowalna para  (AC) ukladdw liniowych moze by¢
przeksztatcona do  ich postad  kanoniznych  sterowalnych i
obserwowalnych prze odpowiedni dobdr nieosobliwej maderzy M
spetniajgcej warunki
M[A Bl=[A Bli[A BM=[4 B].

Pokazano, ze przez odpowiednidobdrmaderzy K sprzezeniazwrotnego
od pochodnej wektora stanu jest moziwa redukda uldadu
deskryptorowego do ukdadu standardowego.

Slowa Kuczowe: sterowalnosé, obserwowalnosé, postaé kanoniczna,
uktad deskryptorowy, ukiad liniowy
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