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Abstract  Abstract: New approaches to the transformations of the uncontrollable and unobservable matrices of linear systems 
to their canonical forms are proposed. It is shown that the uncontrollable pair (A,B) and unobservable pair (A,C) of linear systems 
can be transform to their controllable (𝐴̅, 𝐵̅) and observable (𝐴̅, 𝐶̅)  canonical forms by suitable choice of nonsingular matrix M 

satisfying the condition 𝑀[𝐴     𝐵] = [𝐴̅     𝐵̅]  and [𝐴     𝐵]𝑀 = [𝐴̂     𝐵̂], respectively. It is also shown that by suitable choice 

of the gain matrix K of the feedbacks of the derivative of the state vector it is possible to reduce the descriptor system to the 
standard one. 
Key words  controllability, observability, canonical form, descriptor, linear system. 

 

INTRODUCTION 

The concepts of the controllability and observability 
introduced by Kalman [8, 9] have been the basic notions of 
the modern control theory. It well-known that if the linear 
system is controllable then by the use of state feedbacks it is 
possible to modify the dynamical properties of the closed-
loop systems [1, 2, 5-14]. If the  linear system is observable 
then it is possible to design an observer which reconstruct 
the state vector of the system [1, 2, 5-14]. Descriptor 
systems of integer and fractional order has been analyzed in 
[6, 13]. The stabilization of positive descriptor fractional 
linear systems with two different fractional order by 
decentralized controller have been investigated in [13]. The 
eigenvalues assignment in uncontrollable linear continuous-
time systems has been analyzed in [4]. 

In this paper new approaches to the transformations of 
the uncontrollable and unobservable linear systems will be 
proposed. In Section 2 some basic theorems concerning 
matrix equations with non-square matrices and their 
solutions are given. Transformations of the uncontrollable 
pairs to their canonical forms are presented in Section 3 and 
of the unobservable pairs in Section 4. Transformation of the 
controllable pairs in one canonical forms to other one is 
analyzed in Section 5. Elimination of the singularity in 
descriptor linear systems is considered in Section 6. 
Reduction of the descriptor linear systems to their standard 
forms by the use of the feedbacks is analyzed in Section 7. 
Concluding remarks are given in Section 8. 

The following notation will be used:   - the set of real 

numbers, mn  - the set of mn  real matrices, 
nI - the 

nn  identity matrix. 

I. MATRIX EQUATIONS WITH NON-SQUARE MATRICES AND 
THEIR SOLUTIONS 

Consider the matrix equation 

QPX  ,                                  (1) 

where mnP  , pnQ   are given and 

pmX   is unknown matrix. 

Theorem 1. The matrix equation (1) has a solution X if 
and only if 

PQP rank][rank  .                    (2) 

Proof follows immediately from the Kronecker-Cappelly 
Theorem [3]. 

Theorem 2. If the condition (2) is satisfied then the 
solution X of the equation (1) is given by 

QPX r ,                                (3) 

where nm

rP   is the right inverse of the matrix P 

given by 
nmTT

n

TT

r KKPPPPIPPPP   11

11 ,)][(][

(4a) 
or 

nm

r KPKKP   2

1

22 ,][            (4b) 

the matrix 
1K  is arbitrary and 

2K  is chosen so that 

0]det[ 2 AK . 
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Proof. From (3) and (4a) we have 

QKPPPPIQPPPX TT

n

TT

1

11 )][(][     (5) 

Substituting (5) into (3) we obtain 

QQKPPPPPPQPPPPPX TTTT  

1

11 )][(][

(6) 
Proof of (4b) is similar. □ 
Consider the matrix equation 

QPX  ,                                    ) 

where nmP  , npQ   are given and 

mpX   is unknown matrix. 

Theorem 3. The matrix equation (7) has a solution X if 
and only if 

P
Q

P
rankrank 







 .                       (8) 

Proof is similar (dual) to the proof of Theorem 1. 
Theorem 4. If the condition (8) is satisfied then the 

solution of the equation (7) is given by 

lPQX  ,                               (9) 

where the left inverse of the matrix P  is given by 
mnTT

m

TT

l KPPPPIKPPPP   1

1

1

1 ),][(][

- arbitrary   (10a) 
or 

mm

l KKPKP   22

1

2 ,][  - arbitrary   (10b) 

and the matrix 
2K  is chosen so that 0]det[ 2 PK

. 
Proof is similar (dual) to the proof of Theorem 2. 

II. TRANSFORMATIONS OF THE UNCONTROLLABLE PAIRS TO 
THEIR CANONICAL FORMS 

Consider the continuous-time linear system 

BuAxx  ,                          (11a) 

Cxy  ,                                (11b) 

where ntxx  )( , mtuu  )( , 

ptyy  )(  are the state, input and output vectors 

and nnA  , mnB  , npC  . 

To simplify the notion we assume m = 1 (single input 
systems). 

Definition 1.The pair (A,B) is called in its canonical 
controllable form if 

















































1

0

0

,

...

10000

...............

0...100

0...010

1

1210

1


B

aaaa

A

n    

    

(12a) 
or 

.

0

0

1

,

1...00

...............

0...10

0...01

0...00

2

1

2

1

0

2
























































B

a

a

a

a

A

n   

                         

(12b) 
Theorem 5.There exists a nonsingular matrix 

nnM   which transforms the uncontrollable pair (A,B) 

satisfying the condition 

nBA ][rank                      
(13) 

to the canonical forms (12) if and only if 

][rankrank BA
BA

BA

kk








  for k = 1,2.    (14) 

Proof. From Theorem1 it follows that there exists a 

nonsingular matrix nnM  satisfying the equation 

][][ kk BABAM    for k = 1,2    (15)  

if and only if the condition (14) is satisfied. □ 
If the condition (14) is satisfied then for the given 

matrices A,B and A , B  the matrix M can be computed by 
the use of the following procedure. 

Procedure 1. 
Step 1. Check the condition (14).The problem has a 

solution if and only if the condition (14) is satisfied. 

Step 2. Using the equality BMB  find the 
corresponding column of the matrix M. 

Step 3. Using the equality AMA   find the 
remaining columns of the matrix M.  

The theorem will be illustrated by the following simple 
example. 

Example 1. Find the matrix 22M  satisfying (15) 

which transforms the pair 






















1

0
,

11

01
BA            (16a) 

to their canonical form 
























0

1
,

1

0

1

0
B

a

a
A .        (16b) 

Using Procedure 1 we obtain the following. 

Step 1. The condition (14) is satisfied for the matrix A  
with 01 a . 

Step 2. From the equality 





































22

12

2221

1211

1

0

0

1

m

m

mm

mm
MBB    (17) 

we obtain: 112 m , 022 m . 
 
 
 
Step 3. Taking into account (17) and 
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




























01

10

11

01

0

1

21

11

m

m
MAA

   

(18) 

we obtain: 12111  mm . 

Therefore, the desired nonsingular matrix M has the 
form 











01

11
M .                            (19)  

Remark 1. The approach based on the equation 

][][ BABAM                     
(20)  

can be also used to transform the controllable pair (A,B) 

to the desired standard controllable form ),( BA . 

The procedure will be shown on the following simple 
example. 

Example 2. For the controllable pair 




















1

0
,

21

11
BA

                  

(21) 

find the matrix 22M  satisfying the equality (20) 

such that the pair ),( BA the desired canonical form 




















0

1
,

11

10
MBBMAA .     (22) 

From the equality 




























0

1

1

0

2221

1211

mm

mm
MBB

   

(23) 

we have 112 m , 022 m . 

Using (22) we obtain 




























11

10

21

11

0

1

21

11

m

m
MAA   (24) 

and 1,1 2111  mm . 
Therefore, the desired matrix M has the form 











01

11
M .                              (25) 

III. TRANSFORMATIONS OF THE UNOBSERVABLE PAIRS TO 
THEIR CANONICAL FORMS 

To simplify the notation we assume p = 1(single output 
systems). 

Definition 2. The pair (A,C) is called in its canonical 
observable form if  

]10...0[ˆ,

1...00

...............

0...10

0...01

0...00

ˆ
1

1

2

1

0

1 



































C

a

a

a

a

A

n      

       

(26a) 
 

or          

]0...01[ˆ,

...

10000

...............

0...100

0...010

ˆ
2

1210

2 





























C

aaaa

A

n

.     (26b) 
Theorem 6. There exists a nonsingular matrix 

nnM   which transforms the unobservable pair (A,C) 

satisfying the condition 

n
C

A









rank

                         

(27) 

to the canonical forms (26) if and only if 



















C

A

CC

AA

k

k rank
ˆ

ˆ
rank    for k=1,2.   (28) 

Proof is similar (dual) to the proof of Theorem 5. 

If the condition (28) is satisfied then for the given 

matrices A, C and 𝐴̂, 𝐵̂ the matrix 𝑀̂ can be computed by the 

use of the following procedure. 
Procedure 2. 
Step 1. Check the condition (28). The problem has a 

solution if and only if the condition (28) is satisfied. 

Step 2. Using the equality CMC ˆˆ   find the 

corresponding column of the matrix M̂ . 

Step 3. Using the equality AMA ˆˆ   find the 

remaining columns of the matrix M̂ .  
The procedure will be illustrated by the following simple 

example. 

Example 3. Find the matrix 22ˆ M  satisfying (28) 

which transforms the pair 

]01[,
11

01











 CA          (29) 

to their canonical form 

]10[ˆ,
31

10ˆ 









 CA .        (30) 

Using Procedure 2 we obtain the following. 
Step 1. The condition (28) is satisfied since 






















































C

A

CC

AA
rank

01

11

01

rank

1001

3111

1001

rank
ˆ

ˆ
rank

.    (31) 
Step 2. From the equality 

]10[]01[ˆ

2221

1211











mm

mm
MC    (32)  

we obtain: 011 m , 112 m . 
Step 3. Taking into account (29) and 
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






























31

1010

11

01
ˆ

2221 mm
MA   (33) 

we obtain: 121 m , 222 m . 

Therefore, the desired nonsingular matrix M̂  has the 
form 













21

10
M̂ .                          (34)  

IV. TRANSFORMATIONS OF THE CONTROLLABLE PAIRS TO 
THEIR CANONICAL FORMS 

Consider the following two pairs ),( BA and )ˆ,ˆ( BA  

in canonical forms (26). We are looking for nonsingular 

matrix  nnM  such that  

]ˆˆ[][ BABAM  .                  (35)  

Theorem 7. The pair ),( BA can be transformed by 

(35) into pair )ˆ,ˆ( BA  if and only if 

][rank
ˆˆ

rank BA
BA

BA








 .       (36) 

Proof. By Theorem 1 the equation (35) has a solution M 
if and only if the condition (36) is satisfied. □ 

Now we apply Theorem 7 to the pair ),( BA  in their 

canonical form (12) and we obtain the following theorem. 
Theorem 8. The pair (12a) cannot be transformed into 

pair (12b) by the nonsingular matrix nnM   satisfying 

(35). 
Proof. Applying the condition (36) to the pairs (12) we 

obtain 

1

01...000

...

00...010

00...001

10...000

1...

010...000

...

000...100

000...010

rank
ˆˆ

rank

1

2

1

0

12210






























































n

a

a

a

a

aaaaa

BA

BA

n

nn





(37) 
and 

n

aaaa

BA

nn





























 1...

010...00

...

000...00

000...10

rank][rank

1210



.         (38) 
Therefore, the pair (12a)cannot be transformed to the 

pair(12b) by (35). 
Example 3. Consider the controllable pairs in their 

canonical forms 






















1

0
,

32

10
BA

             

(39) 

and 
























0

1
ˆ,

31

20ˆ BA .               (40) 

In this case the condition (36) takes the form 

3

031

120

132

010

rank
ˆˆ

rank 


































BA

BA

   

(41) 

and 

2
132

010
rank][rank 










BA .   (42) 

Therefore, does not exists the nonsingular matrix 
22M  which transforms the pair (39) into the pair 

(40).   
Similar results we obtain for the observable pairs (A,C). 

Theorem 9. The pairs pair ),( CA  can be transformed 

by the matrix nnN   



















C

A
N

C

A

ˆ

ˆ

                      

(43) 

to observable the pair ),( CA  if and only if 



















C

A

CC

AA
rank

ˆ

ˆ
rank .               (44) 

Proof is similar(dual) to the proof of Theorem 8.  

V. ELIMINATION OF THE SINGULARITY IN DESCRIPTOR LINEAR 
SYSTEMS 

Consider the continuous-time linear system 

BuAxxE  ,                          (45) 

where ntxx  )( , mtuu  )(  are the 

state, input and output vectors and nnAE ,
mnB  . 

It is assumed that 

0det E  and 0]det[  AEs , Cs  

(the field of complex numbers).  (46)  

We are looking for the matrix nnM   satisfying 

the equality 

][][ BAIBAEM n            (47) 

which eliminate the singularity of the system (45). 
Note that  by Theorem 1 there exists the nonsingular 

matrix M satisfying (47) if and only if the condition 

][rankrank BAE
BAI

BAE

n










    

(48) 
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is satisfied.   
From (47) we have 

nIME  .                           (49) 

Note that for nonsingular matrix M the equation (49) has 
no singular solution E.  

Therefore we have the following conclusion. By suitable 
choice of the matrix M it is not possible to transform the 
descriptor system (45) to the standard one of the form 

uBxAx  ,                                  (50) 

where ntxx  )( , mtuu  )(   are the 

state, input and output vectors and nnA  , 
mnB  . 

VI. REDUCTION OF THE DESCRIPTOR LINEAR SYSTEMS TO 
STANDARD ONES BY FEEDBACKS 

Consider the descriptor system(45) with feedbacks of 
the derivative of the state vector shown in Fig.1. 

 

Fig.1. Descriptor system with feedback 

Substituting the equality 
𝑢 = 𝑣 − 𝐾𝑥̇ (v- the new input)    (51)  

into the equation 

BuAxxE                         (52) 

we obtain 

𝐸𝑥̇ = 𝐴𝑥 + 𝐵(𝑣 − 𝐾𝑥̇)
          

(53) 
and  

BvAxxBKE  )( .                (54) 

The feedback matrix nmK   is chosen so that the 

matrix 











K

I
BEBKEF

n
][                  (55) 

is nonsingular. 
Note that there exists the matrix K such that the matrix 

F is nonsingular if and only if  

nBE ][rank .                 (56) 

Note that the equation (55) by Theorem 1 has the 

solution 









K

In  if and only if 

][rank][rank BEFBE        (57) 

and this condition is satisfied if and only if (56) holds. 
Therefore, the following theorem has been proved. 
Theorem 10. There exists the matrix K such that the 

matrix F is nonsingular if and only if the condition (56) is 
satisfied. 

For nonsingular matrix F from(54) we have 

vBxAx  ,                     (58) 

where 

BFBAFA 11 ,   .               (59) 

Example 4. Consider the system (52) with the matrices 































1

0
,

21

10
,

00

10
BAE

   

(60) 

which satisfies the condition (56) since 

2
100

010
rank][rank 








BE .    (61) 

By Theorem 10 there exists the feedback matrix 

][ 21 kkK   such that the matrix 





























21

21

10
][

1

0

00

10

kk
kkBKEF  

 (62) 
is nonsingular. In this case the matrix (62) is nonsingular 

if 02 k  and 
1k  is nonzero. For 11 k , 02 k we 

have 

]01[K  and  










01

10
F

        

(63) 

and 

.
0

1

1

0

01

10

,
10

21

21

10

01

10

1

1

1

1



































 





























BFB

AFA
(64) 

VII. CONCLUSIONS 

Two approaches to the transformations of the 
uncontrollable and unobservable  linear systems to their 
canonical forms has been proposed (Theorems  5 and 6) and 
procedures for calculation of transformation matrices have 
been given (Procedures 1 and 2).The procedures have been 
illustrated by simple numerical examples. It has been shown 
that the pair (12a) Carnot been transformed to the pair (12b) 
by the nonsingular matrix M satisfying (35) (Theorem 7). 
Necessary  and sufficient conditions have been established 
for the reduction of the descriptor linear systems to their 
standard forms(Theorem 8). The considerations can be 
extended to the discrete-time linear systems and to the 
fractional orders linear systems. An open problem is an 
extension of these approaches to the different orders linear 
systems. 
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WYBRANE ZAGADNIENIA ANALIZY UKŁADÓW LINIOWYCH 
Zaproponowano nowe podejścia do transformacji niesterowalnych i 
nieobserwowalnych macierzy układów liniowych do ich postaci 
kanonicznych. Wykazano, że niesterowalna para (A,B) i 
nieobserwowalna para (A,C) układów liniowych może być 
przekształcona do ich postaci kanonicznych sterowalnych i 
obserwowalnych prze odpowiedni dobór nieosobliwej macierzy M 
spełniającej warunki  
 𝑀[𝐴     𝐵] = [𝐴̅     𝐵̅] i [𝐴     𝐵]𝑀 = [𝐴̂     𝐵̂].  
Pokazano, że przez odpowiedni dobór macierzy K sprzężenia zwrotnego 
od pochodnej wektora stanu jest możliwa redukcja układu 
deskryptorowego do układu standardowego. 

Słowa kluczowe: sterowalność, obserwowalność, postać kanoniczna, 
układ deskryptorowy, układ liniowy 
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