PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Nonlinear vibration analysis of beam and plate with closed crack: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of nonlinearity is high sensitivity in damage detection, especially for closed cracks and delamination. This review illustrates the results of several researchers dealing with nonlinear effects caused by the closure of cracks in the structure, i.e., beam and plate structures. Early detection of damage is an important aspect for the structure and, therefore, continuous progress is being made in developing new and effective methods that use nonlinear effects for early detection of damage and barely visible cracks, i.e., closed cracks and delamination, as well as for the determination of crack size and location. After analysing various methods, the merits, drawbacks and prospects of a number of nonlinear vibration methods for structural damage detection are discussed, and recommendations are made for future researchers.
Rocznik
Strony
274--285
Opis fizyczny
Bibliogr. 122 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Institute of Mechanics and Machine Design, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Lin RM, Ng TY. Applications of higher-order frequency response functions to the detection and damage assessment of general structure systems with breathing cracks. Int J Mech Sci [Internet]. 2018;148:652-66. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2018.08.027
  • 2. Avci O, Abdeljaber O, Kiranyaz S, Hussein M, Gabbouj M, Inman DJ. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech Syst Signal Process [Internet]. 2021;147(107077):107077. Available from: http://dx.doi.org/10.1016/j.ymssp.2020.107077
  • 3. Antaki G, Gilada R. Chapter 2 - Design Basis Loads and Qualification, Editor(s): George Antaki, Ramiz Gilada, Nuclear Power Plant Safety and Mechanical Integrity. Butterworth-Heinemann; 2015.
  • 4. Webster M&., Clark L. The structural effects of corrosion - an overview of the mechanisms; 2000.
  • 5. Li YH, Dong YH, Qin Y, Lv HW. Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. Int J Mech Sci [Internet]. 2018;138–139:131–45. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2018.01.041
  • 6. Galvão AS, Silva ARD, Silveira RAM, Gonçalves PB. Nonlinear dynamic behavior and instability of slender frames with semi-rigid connections. Int J Mech Sci [Internet]. 2010;52(12):1547–62. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2010.07.002
  • 7. Wang Y, Yang J, Moradi Z, Safa M, Khadimallah MA. Nonlinear dynamic analysis of thermally deformed beams subjected to uniform loading resting on nonlinear viscoelastic foundation. Eur J Mech A Solids [Internet]. 2022;95(104638):104638. Available from: http://dx.doi.org/10.1016/j.euromechsol.2022.104638
  • 8. Prawin J, Rama Mohan Rao A. Vibration-based breathing crack identification using non-linear intermodulation components under noisy environment. Struct Health Monit [Internet]. 2020;19(1):86–104. Available from: http://dx.doi.org/10.1177/1475921719836953
  • 9. Boungou D, Guillet F, Badaoui ME, Lyonnet P, Rosario T. Fatigue damage detection using cyclostationarity. Mech Syst Signal Process [Internet]. 2015;58–59:128–42. Available from: http://dx.doi.org/10.1016/j.ymssp.2014.11.010
  • 10. Liu P, Sohn H. Damage detection using sideband peak count in spectral correlation domain. J Sound Vib [Internet]. 2017;411:20–33. Available from: http://dx.doi.org/10.1016/j.jsv.2017.08.049
  • 11. Hu C, Yiyong Y, Kexia P, Hu Y. The Vibration Characteristics Analysis of Damping System of Wall-mounted Airborne Equipment Based on FEM, IOP Conf. IOP Conf Ser: Earth Environ Sci. 2018.
  • 12. Oggu S, Sasmal S. Dynamic nonlinearities for identification of the breathing crack type damage in reinforced concrete bridges. Struct Health Monit. 2021;20(1):339–59.
  • 13. Wang X, Liu D, Zhang J, Jiao Y. Damage identification for nonlinear fatigue crack of cantilever beam under harmonic excitation. J vibroengineering [Internet]. 2022;435–52. Available from: http://dx.doi.org/10.21595/jve.2021.22187
  • 14. Ghadami A, Maghsoodi A, Mirdamad HR. A new adaptable multiple-crack detection algorithm in beam-like structures. Arch Mech. 2013;65(6):469–83.
  • 15. Sampath S, Sohn H. Detection and localization of fatigue crack using nonlinear ultrasonic three-wave mixing technique. Int J Fatigue [Internet]. 2022;155(106582):106582. Available from: http://dx.doi.org/10.1016/j.ijfatigue.2021.106582
  • 16. Zhao B, Xu Z, Kan X, Zhong J, Guo T. Structural damage detection by using single natural frequency and the corresponding mode shape. Shock Vib [Internet]. 2016;2016:1–8. Available from: http://dx.doi.org/10.1155/2016/8194549
  • 17. Dilena M, Dell’Oste MF, Morassi A. Detecting cracks in pipes filled with fluid from changes in natural frequencies. Mech Syst Signal Process [Internet]. 2011;25(8):3186–97. Available from: http://dx.doi.org/10.1016/j.ymssp.2011.04.013
  • 18. Mohan V, Parivallal S, Kesavan K, Arunsundaram B, Ahmed AKF, Ravisankar K. Studies on damage detection using frequency change correlation approach for health assessment. Procedia Eng [Internet]. 2014;86:503–10. Available from: http://dx.doi.org/10.1016/j.proeng.2014.11.074
  • 19. Gelman L, Gorpinich S, Thompson C. Adaptive diagnosis of the bilinear mechanical systems. Mech Syst Signal Process [Internet]. 2009;23(5):1548–53. Available from: http://dx.doi.org/10.1016/j.ymssp.2009.01.007
  • 20. Giannini O, Casini P, Vestroni F. Nonlinear harmonic identification of breathing cracks in beams. Comput Struct [Internet]. 2013;129:166–77. Available from: http://dx.doi.org/10.1016/j.compstruc.2013.05.002
  • 21. Caddemi S, Caliò I, Marletta M. The non-linear dynamic response of the Euler–Bernoulli beam with an arbitrary number of switching cracks. Int J Non Linear Mech [Internet]. 2010;45(7):714–26. Available from: http://dx.doi.org/10.1016/j.ijnonlinmec.2010.05.001
  • 22. Chatterjee A. Structural damage assessment in a cantilever beam with a breathing crack using higher order frequency response functions. J Sound Vib [Internet]. 2010;329(16):3325–34. Available from: http://dx.doi.org/10.1016/j.jsv.2010.02.026
  • 23. Moore RC, Inan US, Bell TF. Observations of amplitude saturation in ELF/VLF wave generation by modulated HF heating of the auroral electrojet. Geophys Res Lett [Internet]. 2006;33(12). Available from: http://dx.doi.org/10.1029/2006gl025934
  • 24. Liu J, Zhu WD, Charalambides PG, Shao YM, Xu YF, Fang XM. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips. J Sound Vib [Internet]. 2016;382:274–90. Available from: http://dx.doi.org/10.1016/j.jsv.2016.04.036
  • 25. Nitesh A, Vaibhav S. Analysis of crack detection of a cantilever beam using finite element analysis [IJERT. Int J Eng Res Technol (Ahmedabad). 2015;4(04):713–8.
  • 26. Kaushar HB, Sharma DS, Vishal V. Crack detection in cantilever beam by frequency-based method. Procedia Eng. 2013;51:770–5.
  • 27. Panteliou SD, Chondros TG, Argyrakis VC, Dimarogonas AD. Damping factor as an indicator of crack severity. J Sound Vib [Internet]. 2001;241(2):235–45. Available from: http://dx.doi.org/10.1006/jsvi.2000.3299
  • 28. Zhang C, He L, Liu S, Yang Q. A new vibro-acoustic modulation technique for closed crack detection based on electromagnetic loading. Appl Acoust [Internet]. 2020;157(107004):107004. Available from: http://dx.doi.org/10.1016/j.apacoust.2019.107004
  • 29. Duffour P, Morbidini M, Cawley P. Comparison between a type of vibro-acoustic modulation and damping measurement as NDT techniques. NDT E Int [Internet]. 2006;39(2):123–31. Available from: http://dx.doi.org/10.1016/j.ndteint.2005.07.010
  • 30. Jiao J, Zheng L, Song G, He C, Wu B. Vibro-acoustic modulation technique for micro-crack detection in pipeline. In: Fan K-C, Song M, Lu R-S, editors. Seventh International Symposium on Precision Engineering Measurements and Instrumentation [Internet]. SPIE; 2011. Available from: http://dx.doi.org/10.1117/12.905550
  • 31. Trochidis A, Hadjileontiadis L, Zacharias K. Analysis of Vibroacoustic Modulations for Crack Detection: A Time-Frequency Approach Based on Zhao-Atlas-Marks Distribution, Shock and Vibration; 2014.
  • 32. Gelman L, Gorpinich S, Thompson C. Adaptive diagnosis of the bilinear mechanical systems. Mechanical Systems and Signal; 2009.
  • 33. Cao MS, Sha GG, Gao YF, Ostachowicz W. Structural damage identification using damping: a compendium of uses and features. Smart Mater Struct [Internet]. 2017;26(4):043001. Available from: http://dx.doi.org/10.1088/1361-665x/aa550a
  • 34. Wang Z, Lin RM, Lim MK. Structural damage detection using measured FRF data. Comput Methods Appl Mech Eng [Internet]. 1997;147(1–2):187–97. Available from: http://dx.doi.org/10.1016/s0045-7825(97)00013-3
  • 35. Cappello R, Cutugno S, Pitarresi G. Detection of crack-closure during fatigue loading by means of Second Harmonic Thermoelastic Stress Analysis. Procedia struct integr [Internet]. 2022;39:179–93. Available from: http://dx.doi.org/10.1016/j.prostr.2022.03.087
  • 36. Asnaashari E, Sinha JK. Development of residual operational deflection shape for crack detection in structures. Mech Syst Signal Process [Internet]. 2014;43(1–2):113–23. Available from: http://dx.doi.org/10.1016/j.ymssp.2013.10.003
  • 37. Oks E, Dalimier E, Faenov A, Pikuz T, Fukuda Y, Andreev A, et al. Revealing the second harmonic generation in a femtosecond laser-driven cluster-based plasma by analyzing shapes of Ar XVII spectral lines. Opt Express [Internet]. 2015;23(25):31991–2005. Available from: http://dx.doi.org/10.1364/OE.23.031991
  • 38. Wei X, Zhongging S, Maosen C, Maciej R, Wiesla O. Nonlinear pseudo-force in a breathing crack to generate harmonics. J Sound Vibrat; 2021.
  • 39. Cao M, Su Z, Deng T, Xu W. Nonlinear pseudo-force in breathing delamination to generate harmonics: A mechanism and application study. Int J Mech Sci. 2021;192.
  • 40. Xu W, Su Z, Radzieński M, Cao M, Ostachowicz W. Nonlinear pseudo-force in a breathing crack to generate harmonics. J Sound Vib [Internet]. 2021;492(115734):115734. Available from: http://dx.doi.org/10.1016/j.jsv.2020.115734
  • 41. Cui L, Xu H, Ge J, Cao M, Xu Y, Xu W, et al. Use of bispectrum analysis to inspect the non-linear dynamic characteristics of beam-type structures containing a breathing crack. Sensors (Basel) [Internet]. 2021;21(4):1177. Available from: http://dx.doi.org/10.3390/s21041177
  • 42. Wang K, Liu M, Su Z, Yuan S, Fan Z. Analytical insight into “breathing” crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks. Ultrasonics [Internet]. 2018;88:157–67. Available from: http://dx.doi.org/10.1016/j.ultras.2018.03.008
  • 43. Semperlotti F, Wang KW, Smith EC. Localization of a breathing crack using super-harmonic signals due to system nonlinearity. AIAA J [Internet]. 2009;47(9):2076–86. Available from: http://dx.doi.org/10.2514/1.38947
  • 44. Rivola A, White PR. Bispectral analysis of the bilinear oscillator with application to the detection of fatigue cracks. J Sound Vib [Internet]. 1998;216(5):889–910. Available from: http://dx.doi.org/10.1006/jsvi.1998.1738
  • 45. Prawin J, Rao ARM. Development of polynomial model for cantilever beam with breathing crack. Procedia Eng [Internet]. 2016;144:1419–25. Available from: http://dx.doi.org/10.1016/j.proeng.2016.05.173 46. Khalkar V, Ramachandran SV. Paradigm for natural frequency of an un-cracked cantilever beam and its application to cracked beam. Vibrations in Physical Systems; 2017.
  • 47. Chu YC, Shen MH. Analysis of Forced Bilinear Oscillators and the Application to Cracked Beam Dynam ics. AIAA J. 1992;30(10):2512–2251.
  • 48. Caddemi S, Caliò’ I. Exact solution of the multi-cracked Euler–Bernoulli column. Int J Solids Struct [Internet]. 2008;45(5):1332–51. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2007.09.022
  • 49. Dotti FE, Cortínez VH, Reguera F. Non-linear dynamic response to simple harmonic excitation of a thin-walled beam with a breathing crack. Appl Math Model [Internet]. 2016;40(1):451–67. Available from: http://dx.doi.org/10.1016/j.apm.2015.04.052
  • 50. Bovsunovskii A, Surace C. Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mech Syst Signal Process. 2015;129–48.
  • 51. Broda D, Pieczonka L, Hiwarkar V, Staszewski WJ, Silberschmidt VV. Generation of higher harmonics in longitudinal vibration of beams with breathing cracks. J Sound Vib [Internet]. 2016;381:206–19. Available from: http://dx.doi.org/10.1016/j.jsv.2016.06.025
  • 52. Andreaus U, Baragatti P. Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J Sound Vib [Internet]. 2011;330(4):721–42. Available from: http://dx.doi.org/10.1016/j.jsv.2010.08.032
  • 53. Long H, Liu Y, Liu K. Nonlinear vibration analysis of a beam with a breathing crack. Appl Sci (Basel) [Internet]. 2019;9(18):3874. Available from: http://dx.doi.org/10.3390/app9183874
  • 54. Pugno N, Surace C, Ruotolo R. Evaluation of the non-linear dynamic response to harmonic excitation of a beam with several breathing cracks. J Sound Vib [Internet]. 2000;235(5):749–62. Available from: http://dx.doi.org/10.1006/jsvi.2000.2980
  • 55. Ji JC, Zhou J. Coexistence of two families of sub-harmonic resonances in a time-delayed nonlinear system at different forcing frequencies. Mech Syst Signal Process [Internet]. 2017;93:151–63. Available from: http://dx.doi.org/10.1016/j.ymssp.2017.02.007
  • 56. Zhu J, Cai S, Suo Z. Resonant behavior of a membrane of a dielectric elastomer. Int J Solids Struct [Internet]. 2010;47(24):3254–62. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2010.08.008
  • 57. Casini P, Vestroni F, Giannini O. Crack detection in beam-like structures by nonlinear harmonic identification. Frat integrità strutt [Internet]. 2014;8(29):313–24. Available from: http://dx.doi.org/10.3221/igf-esis.29.27
  • 58. Zhao X, Zhao YR, Gao XZ, Li XY, Li YH. Green׳s functions for the forced vibrations of cracked Euler–Bernoulli beams. Mech Syst Signal Process [Internet]. 2016;68–69:155–75. Available from: http://dx.doi.org/10.1016/j.ymssp.2015.06.023
  • 59. Zhao X, Chen B, Li YH, Zhu WD, Nkiegaing FJ, Shao YB. Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J Sound Vib [Internet]. 2020;464(115001):115001. Available from: http://dx.doi.org/10.1016/j.jsv.2019.115001
  • 60. Chen B, Lin B, Zhao X, Zhu W, Yang Y, Li Y. Closed-form solutions for forced vibrations of a cracked double-beam system interconnected by a viscoelastic layer resting on Winkler–Pasternak elastic foundation. Thin-Walled Struct [Internet]. 2021;163(107688):107688. Available from: http://dx.doi.org/10.1016/j.tws.2021.107688
  • 61. Surace C, Ruotolo R, Storer D. Detecting nonlinear behavior using the volterra series to assess damage in beam-like structures; 2011.
  • 62. Yongfeng Y, Jianjun W, Yanlin W, Chao F, Qingyang Z, Kuan L. Dynamical analysis of hollow-shaft dual-rotor system with circular cracks. Low Freq Noise Vibr [Internet]. 2021;40(3):1227–40. Available from: http://dx.doi.org/10.1177/1461348420948287
  • 63. Wang K, Li Y, Su Z, Guan R, Lu Y, Yuan S. Nonlinear aspects of “breathing” crack-disturbed plate waves: 3-D analytical modeling with experimental validation. Int J Mech Sci [Internet]. 2019;159:140–50. Available from: http://dx.doi.org/10.1016/j.ijmecsci.2019.05.036
  • 64. Maruyama T, Saitoh T, Hirose S. Numerical study on sub-harmonic generation due to interior and surface breaking cracks with contact boundary conditions using time-domain boundary element method. Int J Solids Struct [Internet]. 2017;126–127:74–89. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2017.07.029
  • 65. Koskinen T, Kuutti J, Virkkunen I, Rinta-aho J. Online nonlinear ultrasound imaging of crack closure during thermal fatigue loading. NDT E Int [Internet]. 2021;123(102510):102510. Available from: http://dx.doi.org/10.1016/j.ndteint.2021.102510
  • 66. Lee SE, Hong JW. Detection of Micro-Cracks in Metals Using Modulation of PZT-Induced Lamb Waves. Materials (Basel). 2020;13.
  • 67. Wu TC, Kobayashi M, Tanabe M, Yang CH. The Use of Flexible Ultrasound Transducers for the Detection of Laser-Induced Guided Waves on Curved Surfaces at Elevated Temperaturs. Sensors (Basel). 2017;17.
  • 68. Lu Z, Dong D, Ouyang H, Cao S, Hua C. Localization of breathing cracks in stepped rotors using superharmonic characteristic deflection shapes based on singular value decomposition in frequency domain. Fatigue Fract Eng Mater Struct. 2017;40(11):1825–37.
  • 69. Cao M, Lu Q, Su Z, Radzieński M, Xu W, Ostachowicz W. A nonlinearity-sensitive approach for detection of “breathing” cracks relying on energy modulation effect. J Sound Vib [Internet]. 2022;524(116754):116754. Available from: http://dx.doi.org/10.1016/j.jsv.2022.116754
  • 70. Sun X, Ding X, Li F, Zhou S, Liu Y, Hu N, et al. Interaction of Lamb wave modes with weak material nonlinearity: Generation of symmetric zero-frequency mode. Sensors (Basel) [Internet]. 2018;18(8). Available from: http://dx.doi.org/10.3390/s18082451
  • 71. Song H, Xiang M, Lu G, Wang T. Singular spectrum analysis and fuzzy entropy based damage detection on a thin aluminium plate by using PZTs. Smart Mater Struct. 2022;31(3).
  • 72. Li W, Xu Y, Hu N, Deng M. Numerical and experimental investigations on second-order combined harmonic generation of Lamb wave mixing. AIP Adv [Internet]. 2020;10(4):045119. Available from: http://dx.doi.org/10.1063/1.5140588
  • 73. Zhu W, Xu Z, Xiang Y, Liu C, Deng M, Qiu X, et al. Nonlinear ultrasonic detection of partially closed cracks in metal plates using static component of lamb waves. NDT E Int [Internet]. 2021;124(102538):102538. Available from: http://dx.doi.org/10.1016/j.ndteint.2021.102538
  • 74. Chen B-Y, Soh S-K, Lee H-P, Tay T-E, Tan VBC. A vibro-acoustic modulation method for the detection of delamination and kissing bond in composites. J Compos Mater [Internet]. 2016;50(22):3089–104. Available from: http://dx.doi.org/10.1177/0021998315615652
  • 75. Carneiro SHS, Inman DJ. Continuous model for the transverse vibration of cracked Timoshenko beams. J Vib Acoust [Internet]. 2002;124(2):310–20. Available from: http://dx.doi.org/10.1115/1.1452744
  • 76. Saito A. Nonlinear Vibration Analysis of Cracked Structures - Application to Turbomachinery Rotors with Cracked Blades. Turbomachinery Rotors with Cracked Blades; 2009.
  • 77. Rezaee M, Hassannejad R. Free vibration analysis of simply supported beam with breathing crack using perturbation method. Acta mech solida Sin [Internet]. 2010;23(5):459–70. Available from: http://dx.doi.org/10.1016/s0894-9166(10)60048-1
  • 78. Liu L, Mei X, Dong D, Liu H. Perturbation methods for dynamic analysis of cracked beams. In: 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE; 2011.
  • 79. Stepanova LV, Igonin SA. Perturbation method for solving the nonlinear eigenvalue problem arising from fatigue crack growth problem in a damaged medium. Appl Math Model [Internet]. 2014;38(14):3436–55. Available from: http://dx.doi.org/10.1016/j.apm.2013.11.057
  • 80. Kharazan M, Irani S, Noorian MA, Salimi MR. Nonlinear vibration analysis of a cantilever beam with multiple breathing edge cracks. Int J Non Linear Mech [Internet]. 2021;136(103774):103774. Available from: http://dx.doi.org/10.1016/j.ijnonlinmec.2021.103774
  • 81. Singh AC, Tay TE, Lee H. Numerical investigations of non-linear acoustics/ultrasonics for damage detection. 2016.
  • 82. Sun Z, Li F, Li H. A numerical study of non-collinear wave mixing and generated resonant components. Ultrasonics [Internet]. 2016;71:245–55. Available from: http://dx.doi.org/10.1016/j.ultras.2016.06.019
  • 83. Tabatabaeipour M, Delrue J, Steven VA. Reconstruction Algorithm for Probabilistic Inspection of Damage (RAPID) in Composites. 2014.
  • 84. Andreades C, Malfense Fierro GP, Meo M. A nonlinear ultrasonic modulation approach for the detection and localisation of contact defects. Mech Syst Signal Process [Internet]. 2022;162(108088):108088. Available from: http://dx.doi.org/10.1016/j.ymssp.2021.108088
  • 85. Schwarts-Givli H, Rabinovitch O, Frostig Y. High-order nonlinear contact effects in the dynamic behavior of delaminated sandwich panels with a flexible core. Int J Solids Struct [Internet]. 2007;44(1):77–99. Available from: http://dx.doi.org/10.1016/j.ijsolstr.2006.04.016
  • 86. Shankar G, Varuna JP. P.K.Mahato, Effect of delamination on vibration characteristic of smart laminated composite plate. Journal of Aerospace System Engineering. 2019;13(4):10–7.
  • 87. Mohammad H, Kargarnovin *., Ahmadian MT. Forced vibration of delaminated Timoshenko beams subjected to a moving load. Sci Eng Compos Mater. 2012;19(2):145–57.
  • 88. Zhang Z, Shankar K&., Murat & Morozov E. Vibration Modelling of Composite Laminates with Delamination Damage. ICCM International Conferences on Composite Material;. 2015.
  • 89. Chen Y, Huang B, Yan G, Wang J. Characterization of delamination effects on free vibration and impact response of composite plates resting on visco-Pasternak foundations. Int J Mech Sci. 2021.
  • 90. Thangaratnam K, Sanjana R. Nonlinear analysis of composite plates and shells subjected to in-plane loading. Appl Mech Mater [Internet]. 2018;877:341–6. Available from: http://dx.doi.org/10.4028/www.scientific.net/amm.877.341
  • 91. Pradhan SC, Ng TY, Lam KY, Reddy JN. Control of laminated composite plates using magnetostrictive layers. Smart Mater Struct [Internet]. 2001;10(4):657–67. Available from: http://dx.doi.org/10.1088/0964-1726/10/4/309
  • 92. Mantari JL, Oktem AS. Guedes Soares C. A new higher order shear deformation theory for sandwich and composite laminated plates. Part B Eng. 2012;43(3):1489–99.
  • 93. Fares ME, Elmarghany MK. A refined zigzag nonlinear first-order shear deformation theory of composite laminated plates. Compos Struct [Internet]. 2008;82(1):71–83. Available from: http://dx.doi.org/10.1016/j.compstruct.2006.12.007
  • 94. Yushu L, Zhou H, Huasong Q, Wenshan Y, Yilun L. Machine learning approach for delamination detection with feature missing and noise polluted vibration characteristics. Compos Struct. 2022;
  • 95. Civalek Ö. Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos B Eng [Internet]. 2013;50:171–9. Available from: http://dx.doi.org/10.1016/j.compositesb.2013.01.027
  • 96. Civalek Ö. Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos B Eng [Internet]. 2013;50:171–9. Available from: http://dx.doi.org/10.1016/j.compositesb.2013.01.027
  • 97. Shen H-S, Xiang Y. Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng Struct [Internet]. 2013;56:698–708. Available from: http://dx.doi.org/10.1016/j.engstruct.2013.06.002
  • 98. Houhat N, Tournat V, Ménigot S, Boutkedjirt T, Girault J-M. Optimal pump excitation frequency for improvement of damage detection by nonlinear vibro acoustic modulation method in a multiple scattering sample. Appl Acoust [Internet]. 2019;155:222–31. Available from: http://dx.doi.org/10.1016/j.apacoust.2019.06.010
  • 99. Zhang X, Wu X, He Y, Yang S, Chen S, Zhang S, et al. CFRP barely visible impact damage inspection based on an ultrasound wave distortion indicator. Compos B Eng [Internet]. 2019;168:152–8. Available from: http://dx.doi.org/10.1016/j.compositesb.2018.12.092
  • 100. Castellano A, Fraddosio A, Piccioni MD, Kundu T. Linear and nonlinear ultrasonic techniques for monitoring stress-induced damages in concrete. J Nondestruct Eval Diagn Progn Eng Syst [Internet]. 2021;4(4):1–21. Available from: http://dx.doi.org/10.1115/1.4050354
  • 101. Santhakumar S, Hoon S. Detection and localization of fatigue crack using nonlinear ultrasonic three-wave mixing technique. Int J Fa-tigue. 2022;
  • 102. Qin W, Liyong Z, Jianguo Z, Lijun Z, Wenfeng H. Characterization of impact fatigue damage in CFRP composites using nonlinear acous-tic resonance method. Compos Struct. 2020;
  • 103. Sikdar S, Ostachowicz W, Kudela P, Radzieński M. Barely visible impact damage identification in a 3D core sandwich structure. Com-puter Assisted Methods In Engineering And Science. 2018;24(4):259–68.
  • 104. Xianghong W, He C, He H, Wei X. Simulation and experimental research on nonlinear ultrasonic testing of composite material po-rosity. Appl Acoust. 2022;
  • 105. Yang F, Sedaghati R, Esmailzadeh E. Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. J Vib Control [Internet]. 2022;28(7–8):812–36. Available from: http://dx.doi.org/10.1177/1077546320984305
  • 106. Buezas F, Rosales MB, Filipich C. Damage detection with genetic algorithms taking into account a crack contact model. Engineering Fracture Mechanics - ENG FRACTURE MECH. 2011;78:695–712.
  • 107. Shallan O, Atef &., Tharwat &., Khozam M. Structural Damage Detection using Genetic Algorithm by Static Measurements. Interna-tional Journal of Trend Research Development. 2017;4:2394–9.
  • 108. Qi Y, Rui X, Ji K, Liu C, Zhou C. Study on aeolian vibration sup-pression schemes for large crossing span of ultra-high-voltage eight-bundle conductors. Adv Mech Eng [Internet]. 2019;11(4):168781401984270. Available from: http://dx.doi.org/10.1177/1687814019842706
  • 109. Ashtiani M, Hashemabadi SH, Ghaffari A. A review on the magne-torheological fluid preparation and stabilization. J Magn Magn Mater [Internet]. 2015;374:716–30. Available from: http://dx.doi.org/10.1016/j.jmmm.2014.09.020
  • 110. Williams K, Chiu G, Bernhard R. Adaptive-passive absorbers using shape-memory alloys. J Sound Vib [Internet]. 2002;249(5):835–48. Available from: http://dx.doi.org/10.1006/jsvi.2000.3496
  • 111. Mohanty S, Dwivedy S. Linear and nonlinear analysis of traditional and non-traditional piezoelectric vibration absorber with time delay feedback for simultaneous resonance conditions. Mechanical Systems and Signal Processing. 2021.
  • 112. Zhang W, Zhao MH. Nonlinear vibrations of a composite laminated cantilever rectangular plate with one-to-one internal resonance. Nonlinear Dyn [Internet]. 2012;70(1):295–313. Available from: http://dx.doi.org/10.1007/s11071-012-0455-6
  • 113. Yousuf LS. Nonlinear dynamics investigation of bending deflection of stiffened composite laminated plate using Lyapunov exponent conception. In: Volume 7B: Dynamics, Vibration, and Control. Amer-ican Society of Mechanical Engineers; 2021.
  • 114. Dauson E, Donahue C, DeWolf S, Hua L, Xiao H, Murdoch L, et al. Damage Detection in a laboratory-scale wellbore applying Time Reverse Nonlinear Elastic Wave Spectroscopy. TR NEWS; 2021.
  • 115. Wei D, Liu X, Wang B, Tang Z, Bo L. Damage quantification of aluminum plates using SC-DTW method based on Lamb waves. Meas Sci Technol [Internet]. 2022;33(4):045001. Available from: http://dx.doi.org/10.1088/1361-6501/ac4435
  • 116. Zhen P, Li J, Hao H, Li C. Nonlinear structural damage detection using output-only Volterra series model. Struct Contr Health Monit. 2021.
  • 117. Samaitis V, Mažeika L, Rekuvienė R. Assessment of the length and depth of delamination-type defects using ultrasonic guided waves. Appl Sci (Basel) [Internet]. 2020;10(15):5236. Available from: http://dx.doi.org/10.3390/app10155236
  • 118. Wang CH, Rose LRF. Wave reflection and transmission in beams containing delamination and inhomogeneity. J Sound Vib [Internet]. 2003;264(4):851–72. Available from: http://dx.doi.org/10.1016/s0022-460x(02)01193-8
  • 119. Nag A, Mahapatra D, Gopalakrishnan S, Sankar TS. A spectral finite element with embedded delamination for modeling of wave scattering in composite beams. Compos Sci Technol. 2003;63(15):2187–200.
  • 120. Gudmundson P; GUDMUNSON. The dynamic behaviour of slender structures with cross-sectional cracks. J Mech Phys Solids. 1983;31(4):329–45.
  • 121. Zhang W, Ma H, Zeng J, Wu S, Wen B. Vibration responses analy-sis of an elastic-support cantilever beam with crack and offset boundary. Mech Syst Signal Process [Internet]. 2017;95:205–18. Available from: http://dx.doi.org/10.1016/j.ymssp.2017.03.032
  • 122. Matveev VV, Boginich OE, Yakovlev AP. Approximate analytical method for determining the vibration-diagnostic parameter indicating the presence of a crack in a distributed-parameter elastic system at super- and subharmonic resonances. Strength Mater [Internet]. 2010;42(5):528–43. Available from: http://dx.doi.org/10.1007/s11223-010-9243-z
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-79c7ac5c-6c38-47cf-b16a-e2f05f53a104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.